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Abstract 
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Todays, researchers are challenging with manufacturing polymeric nanocomposites reinforced with ceramic particles due to two 

inherent properties of ceramic reinforcement particles, particle agglomeration and incompatibility between hydrophilic ceramic particles 

and hydrophobic polymeric matrix. So in this study, we used nano-Hydroxyapatite (n-HA) as ceramic material and Stearic acid as 

amphiphilic material for coating n-HA, hydroxysteric acid (SA) surfactant was used for surface coating particles between the hydrophilic 

HA powders and the hydrophobic polymers. The surface modification and effect of this method were evaluated by by Fourier 

transformation infrared (FTIR), x-ray diffractometer (XRD), thermal gravimetric analysis (TGA) and Scanning electron microscopy 

(SEM). The result of FTIR showed that n-HA surfaces were modified successfully and the modification method had the proper grafting 

amount according to TGA due to this method of modification will be proper for coating reinforcement particles in polymeric matrix. 
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1 Introduction 
Aliphatic polyesters, such as poly(lactic acid) (PLA), 

poly(glycolic acid) (PGA) and their copolymers (PLGA), are 

biodegradable and essentially non-toxic one of the main polymer 

groups, such as bone screws, bone plates and pins made of PLA or 

PDLLA have been widely used in bone fracture fixation [1–3]. 

However, PLLA and PDLLA have still their weaknesses, for 

example for PLLA, although it can be completely degraded in one 

or two years [4], Moreover, for clinical research, and so far it has 

been one of the most commonly used in biomedical fields such as 

bone screws, due to the combination of its bioabsorbabtily, 

biodegradable, biocompatible .[5]. However, for PLLA, there are 

still some critical subjects to be solved so as to be used as bone 

screws in body, for example, its mechanical properties are too low 

to be sufficient for more demanding load application due to its 

non-crystallinity, and the poor cell attachment ability [6,7]. To 

overcome these inherent disadvantages, the prevalent method is to 

introduce the inorganic fillers into PLLA to fabricate 

filler/polymer composites, such as hydroxyapatite, _-tricalcium 

phosphate, bioglass, titanium dioxide, and so on [8-11]. Among 

the inorganic filler/PLLA composites, nano-hydroxyapatite (n-

HA) is a major inorganic component of natural bone, so it was 

thought to have good bioactivity and osteoconductivity properties 

due to their chemical and structural similarity to the mineral phase 

of native bone. Moreover, n-HA is a weak alkali inorganic filler, 

which can buffer acidic in body[12–14]. Therefore, to improve the 

shortcomings of PLLA, the n-HA/PLGA composite have been 
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extensively investigated, which are expected to reinforce 

mechanical properties, improve cell adhesion and endow it with 

bioactivity as well as adjust the degradation rate by inducing n- 

HA nanoparticles [15–17]. However, there are two most 

problematic issues in manufacturing n-HA/PLLA composite, the 

one is the agglomeration of the HA nanoparticles in the PLLA 

matrix, and another is a weak adhesion between the hydrophilic n-

HA and hydrophobic polymer, which will result in early failure at 

the interface and thus deteriorate the mechanical properties and 

limit its load-bearing applications. To solve these problems, it is 

necessary to hunt for an appropriate modification method for n-

HA to improve the dispersion and the compatibility between the 

filler and the polymer, and it has been becoming the key of 

research work. Accordingly, many methods have already been 

applied [18–23], including a diverse class of coupling agents, 

zirconyl salt, poly acids, dodecyl alcohol, polyethylene glycol and 

isocyanate, and so on. However, among these techniques, the 

modification effects were all not very ideal, most of these methods 

are complex, while the surface of nanoparticles is not well 

covered, Based on this aim of oure work is to develop a modified 

coating to potentially enhance the application of 

nanohydroxyapatite for biomaterials. Therfore n-HA was coated 

with stearic acid by means of solution mixing, this method is 

simple and low cost 

 

2 Materials and Methods 
2.1 Materials 

n-HA was prepared on our previous report[24], Briefly, 

separate solutions of calcium nitrate tetra hydrate (Ca 

(NO3)2·4H2O; Merck) in water and phosphoric acid (H3PO4; 

Merck) in ethanol/water (1/4 by mole) were prepared by stirring 

each for 3 h and were then mixed together at a stoichiometry of 

[Ca]/[P] ¼ 1.67, followed by stirring for 6 h, and aging for 7 days 

at room temperature, The product was white precipitated 
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that were dried at 80C° for 24h in oven then were calcined at 

600C° for 2 h using an electrical furnace with heating rate of 10 

c/min to prepare nano HA powder. 

 
2.2 The modification of n-HA 

Firstly, an amphiphilic surfactant SA (C18H36O3; Aldrich) 

was dissolved in aceton at 50 C°. (Solution 1). The HA powder 

was dispersed at 5% w/v in the aceton (solution 2). Then, two 

solution mixed up together and stirred 4 hours at 55 C°, in period 

of stirring volume of aceton should be constant, then solution was 

washed whit chloroform and cyclohexane, respectively. 

In order to study the phase evolution and formation of 

crystalline HA, the produced powders were analyzed by using IR 

spectroscopy (Buck 500, KBr) in the range of 500–4000 cm−1. 
Phase identification of the calcined gels was performed using the 

X-ray diffractometer (XRD, Philips, X’pert Pro, CuK_) at a 
scanning speed of 1◦ 2θ min−1 from 10◦ to 60◦. electron 
microscopy (SEM S 360, Oxford-England) was used for 

morphology analysis of products. 

 

3 Results and Discussion 
3.1 XRD analyse 

The XRD pattern Hydroxyapatite was shown in Figure 1. The 

pattern indicate the presence of pure hydroxyapatite in obtained 

powder. 

 

 

 
 

Figure 1. XRD patterns of HA powder 
 

3.2 Morphology and particle size 

For proper amount of nanoparticle coating, it is necessary to 

measure the particle size of the particles to assess appropriate 

amount of SA, otherwise the surfactant amount will be less and 

coating will be incomplete. In The Fig. 2 was shown morphology 

of n-HA that had spherical shape, and mean size nanoparticles 

measured 30 nanometres. 

 
3.3 IR analyse 

The IR spectra of n-HA and g-n-HA are shown in Fig 3. For 

n-HA (shown in Fig. 3(a)), the spectroscopic band are observed 

around the 3568 cm−1 and 632 cm−1, which are described to the 

stretching vibration of the hydroxyl group (OH) of n-HA, and 

the peak at 3421 cm−1 and 1637 cm−1 are both attributed to 

adsorbed water. The peak at 875 cm−1 for HPO 2−, 1094 cm−1, 1032 

cm−1, 604 cm−1 and 564 cm−1 are all attributed to PO 3− peak. In 

addition, 1452 cm−1 and 1413 cm−1 double split peaks belong to 

CO3 asymmetric stretch peak, which indicated CO 2− entered HA 

lattice. These results are in accordance with that of n- HA in 

literature. After surface modification, the above characteristic 

peaks of n- HA are all observed in the spectra of g- n-HA, which 

suggested n-HA had not been changed. Compared with the spectra 

of g-n-HA, for the g1-n-HA (shown in the Fig. 3(b)), a new 

absorptions emerges at 1558 cm−1, implying the formation of 

calcium carboxylate on the surface of n-HA. 

 
 

 
 

Figure 2. SEM image of calcined HA powders 



Advances in Applied NanoBio-Technologies 2020, Volume 1, Issue 1, Pages: 1-4 

3 

 

 

 

 
 

 

 

 
 

%

%Wt 

 

 

 
 

Wt 

(a) (b) 

 

 
200 

 

 

150 

 

 

100 

 

 

50 

 

 

0 

1000 2000 3000 4000 

wavenumber 

(c) 
Figure 3. The IR spectra of (a) g-n-HA, (b) n-HA and (c) FTIR curves of (a) unmodified n-HA, (b) n-HA modified with stearic acid 

 

3.4 TGA 

The amounts of grafted HSA were measured by TGA, as 

shown in Fig. 4. According to the TGA curve, the weight loss of 

n-HA is 2.08%, and the g-n-HA, 5.729%, Thus, the surface- 

grafted amounts of g-n-HA is calculated as follows: The grafting 

amounts = weight loss% (gn-HA)-Weight loss % (n-HA), which 

is 3.649. Obviously, it is further proved that n-HA surface was 

successful grafted in quantitatively. 

 

4 Conclusions 
Nanoparticles of hydroxyapatite were coated with a simple 

and efficient method which result of TGA and FTIR confirmed 

appropriate coating. 
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