

J. Environ. Treat. Tech. ISSN: 2309-1185



## The Effects of Noise Pollution on the Cell Senescence

#### Tahereh Talaei-Khozani\*

Histomorphometry and Stereology Research Center, Shiraz Medical School, Shiraz University of Medical Sciences

#### **Abstract**

Noise pollution, primarily caused by human activities, refers to unwanted ambient noise that adversely affects quality of life and health. The World Health Organization (WHO) and the Environmental Protection Agency (EPA) suggest a safe noise exposure level of 70 dB. Noise pollution can lead to significant health issues. It is supposed that noise pollution accelerates cellular senescence, characterized by cell cycle arrest, metabolic changes, inducing inflammation. Although there is no direct evidence to show the relation of noise exposure and induction of cell senescence, the noise pollution often mediated some key proteins involve in cell senescence like p53 and AMPK. It also affects mitochondrial function, leading to increased reactive oxygen species (ROS), reduced telomerase activity and change in pro-inflammatory cytokines. Chronic noise exposure alters cellular signaling pathways and metabolic responses, highlighting the need for further understanding of its impact on health and aging. Overall, noise pollution poses significant risks to human health and cellular dynamics, necessitating attention to environmental noise levels.

Keywords: noise pollution, cellular senescence, health impact, mitochondrial function, chronic exposure

#### 1 Introduction

Noise pollution refers to an increase in the environmental ambient and unwanted noise. Noise pollution is anthropogenic and makes by the human activities (1), and may interfere with normal human activities and life quality. However, based on the WHO guidelines, the safe level of noise varies in different situations and times (2), 70 db has been suggested by Environmental Protection Agency's (EPA's) for public as safe level of noise exposure (3). Noise pollution has many detrimental effects on human health. Noise-induced hearing loss is one of the most important side effects of noise pollution that affects 5% of the population around the world (4). Noise pollution also increase the chance of diseases in different organs such as heart (5, 6), vessels (7), kidney (8, 9), and brain (10). Noise pollution also increases the risk of hypertension (11), and hypertension depended diseases such as preeclampsia (12). It also leads to an increase in the prevalence of the metabolic disorders (13, 14, 15). Structural changes in some organs such as chick inner ear hair cells (16), rat adrenal gland (17) and mice developing heart (18) have been also reported by noise exposure.

Animal studies showed that noise pollution has many impacts on the embryo development as well. Exposure of the chick embryo to 110 dB noises led to a reduction in body weight, brain size and weight through a decrease in neuronal density (19), and changes in metabolite concentrations in the auditory cortex (20). The prenatal administration of 126 dB noise to the pregnant mouse showed embryotoxicity as well as a decrease in the pregnancy rate (21). Histochemical changes in developing heart (22), cochlea (23) and spiral ganglion (24) have been reported in mouse embryos by noise pollution. It supposed that the adverse effects of noise exposure can be due to releasing the glucocorticoid hormones by noise stress (25), activation of inflammatory factors (26), reactive oxygen

species (ROS) production (27). The cells in the body can be influence by noise-induced oxidative stress. ROS and antioxidant imbalance may lead to change in differentiation and self-renewal capacity of stem cells (28). Aging has been defined as the progressive reduction in the tissue functional that leads to dead of organism (29). The process of aging is multifactorial, and can be impacted by environmental, social, and psychosocial factors. It has been shown that the noise pollution can promote aging process (30). Cellular senescence happens throughout in the life in different tissues and leads to stable cell cycle arrest in response to DNA damage or the environmental stressors. Although, cell senescence is one the regressive processes in the aging, it has some benefits for organisms (31). The senescence cells can be considered as postmitotic fully differentiated cell (32).

The objective of the current review is to discuss the evidence that shows the possible influence of noise pollution on the different aspects cell senescence physiology.

# 2 Noise impact on metabolism, oxidative stress and inflammation

Animal studies showed that in response to noise stress, the releasing glucocorticoids led to an increase in gluconeogenesis and hepatic glycogenolysis and the level of glucose. It also can act as antagonist of insultin. Noise pollution interrupts the hypothalamo-pituitary adrenal axis (25). Short and long term exposure to noise led to producing ROS, and increasing in the Malondialdehyde (MDA), nitric oxide (NO) and glutathione peroxidase (26) and decreasing in the superoxide dismutase (33) in rats and human. Noise pollution also reduces the level of superoxide dismutase in blood serum (27). ROS production in turn elevated the level of factors including nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor-κB (NF-κB), and peroxisome proliferator-activated receptor (PPAR) that

<sup>\*</sup>Corresponding author: Tahereh Talaei-Khozani, Histomorphometry and Stereology Research Center, Shiraz Medical School, Shiraz University of Medical Sciences, Email: talaeitkh@gmail.com

induce the inflammation. The noise exposure leads to morphological changes and induces apoptosis in spleen (26), rat testicular tissue (34) and hair cells of inner ear (35). Mitochondrial destruction has been also reported by noise exposure (26). Noise mediates apoptosis through elevation of the p53 expression level, and therefore, p53 inhibitors have been suggested to prevent noise-induced cell death (35).

### 3 Cellular Senescence

Although, there are different type of cellular senescence, they are characterized by cell division arrest, resistance to apoptosis, change in cell secretome, (36) deregulation of metabolism, inflammation and regressive changes in tissue (37, 38). Cell cycle regulators such as P53, P21 and P16 play some roles in senescence processes (36). Cell division arrest by these regulators inhibits inherited damaged DNA to the daughter cells (39). Transcriptional heterogeneity also increases in senescence cells (40). Age-related shortening of telomere and decrease in telomerase activity are the other senescence features in some type of cellular senescence (29). Shortening of the telomere led to cell division arrest, and increase in the number of senescence cells in tissues is related to aging and development of age related diseases (41).

The mammalian target of rapamycin (mTOR) is a kinase that has important roles in cellular senescence. It regulates cellular metabolism, immune responses, autophagy, survival, and proliferation. In non-senescence cells, it inhibits autophagy. Autophagy activation by m-TOR in senescence cells leads to providing amino acids that activates mTOR complex 1. M-TOR, and changes the transcriptome of the cells toward senescence associated secretory phenotype (SASP) (42). mTOR complex 1 can be inhibited by AMP-activated protein kinase (AMPK), and therefore, the activation of AMPK represses m-TOR (43). Cells use m-TOR signaling pathway as a strategy for survival by regulating metabolism (44). Environmental stressors can be sensed by m-TOR signaling pathway and change the cell growth and metabolism in a species-dependent manner (45, 46).

Another parameter in cell aging is mitochondrial dysfuction. In senescent cells, respiratory capacity per mitochondrion and mitochondrial membrane potential (MMP) diminish. Due to decrease in mitophagy, these dysfunctional mitochondria accumulate in the cells leads to an increase in total mass on mitochondria in senescence cells. The damaged mitochondria produce a higher amount of ROS. A reduction in nicotinamide adenine dinucleotide (NADH) to NAD+ ratio has been shown in cell senescence (47).

## 4 Noise pollution and cellular senescence

Noise exposure leads to immunological changes. It also changes the protein content of the plasma. Noise exposure elevates the level of the enzymes involves in oxidative stress such as inducible nitric oxide synthase (iNOS). Immuno cell activation causes oxidative stress induction and ROS formation (48). It is one of the major factors that promotes cell senescence (49, 50, 51). Traffic noise exposure has been also shown to accelerate aging process (52,53), and one of the potential mechanisms is through oxidative stress induction. Noise exposure has been shown to reduce telomerase activity in sexdepended manner. The noise stress reduce telomere length in the female brain but not male. However, noise exposure led to a decrease in telomerase activity in male gonads of mature stone sculpins (53). Traffic noise also reduced the telomere length in blood cells of the house sparrows (54). Noise also reduced the functionality and size of mitochondria in the blood cells of this species as well (55). Exposure of the peled to 176186 dB noise led to a reduction in the number of active mitochondria in the red blood cells without changing in telomeres (56). Accumulation of damaged mitochondria may accelerate the processes of cellular senescence (57).

In one study, the mice were exposed to sound intensity with average 85db (aircraft noise). This noise pollution leads to endothelial dysfunction, blood pressure, and oxidative stress. Detrimental effects of noise stress have been reported in hair cells. Also, nuclear import of the caspase-independent cell death marker, Endo G, has been shown in outer hair cells after 1-3 h post-exposure. Traumatic noise temporary reduces intracellular ATP concentration and activates Rho GTPase pathways in mouse outer hair cells. (58). Both ATP depletion and Rho GTPase signaling pathways have roles in the induction of cell senescence. In senescence cells, the ATP generation by mitochondria decreases (59). Reduction of ATP triggers cell senescence by upregulating P21 and P16 (60, 61). Cell senescence has been shown to induce in rat peripheral annulus fibrosus cells (62), human foreskin fibroblast (63), mouse embryo fibroblasts (64), primary fibroblasts (65), and HeLa cell clones (66) through the RhoA/ROCK pathway. Administration of one of the AMPK activator (5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) caused normalization of the oxidative stress and protected the detrimental impact of noise pollution (67). Activation of the AMPK inhibits m-TOR, the regulator of senescence processes

There are a contradictory data about the effects of noise exposure and glycocorticoid level, and, it seems to be species specific. Some studies indicate that the exposure to traffic noise in birds such as the white-crowned sparrows (69), and freeliving house sparrows (70) lowered or had no impact on the level of glucocorticoids, and the other showed that it elevated in white-crowned sparrows (71). A correlation has been detected between the traffic noise exposure and glucocorticoid metabolism in human newborns (72). Exposure of mice to 90 dB noise increased the cortisol and glucose level (73). Both cortisol and high glucose level induce cell senescence. Stress induced glucocorticoids increased the ROS by mitochondrial activity. ROS in turn, damaged telomere and reduces the telomerase activity (74). Also, glucocorticoides induces the expression of pre-inflammatory cytokines (75), and these cytokins can induce cell senescence (76). In contrast, glucocorticoid administration has been reported to elevate the activity of beta-galactosidase, senescence marker, without decrease in cell proliferation or increase in DNA damage in mesenchymal stem cells, but not in fibroblasts isolated from synovial membrane (77). High glucose exposure induces cell senescence by upregulation of p16, p21, and p53 (78), telomere shortening and proinflammatory cytokine release (79, 80). Also high glucose level elevates the m-TOR level and as a result, cell senescence in mesenchymal stem cells and human vascular endothelial cells (81, 82, 83).

Calcium overload in the cells such as outer hair cells has been shown after noise exposure (84, 85). Intracellular calcium elevation has been also demonstrated in senescence cells. The calcium accumulation in the mitochondria interferes with their normal function (86).

Studies have demonstrated that noise-induced stress causes pro-inflammatory cytokines elevation, including interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF- $\alpha$ ) in different organs (87, 88, 89). Both these cytokines increase in older adults (90). Besides, long term exposure of MCF-7 cell line and human umbilical vein endothelial cells to IL6 and TNF- $\alpha$  induces senescence phenotype (91, 92).

There is a controversy about the effect of noise on cholesterol and HDL levels. While one study showed that

occupational exposure to noise has been reported to decrease the cholesterol level (93), the other study revealed any correlation between serum cholesterol and HDL and noise exposure (94). In contrast, occupational noise exposure to human workers had no impact on the cholesterol level (95). On the other hand, a study showed that administration of mice to intermittent noise with level of 70-100 dB for 50 days reduced the HDL and cholesterol levels in serum (96). HDL has been reported to reduce the cell senescence in endothelial progenitor HDLcells. also activates telomerase through phosphatidylinositol-3-kinase/Akt (PI3K/Akt) signaling pathway (97). Therefore, noise may influence cellular senescence by decreasing HDL. In senescence cells, the metabolism of lipids is also disregulated (99, 100). Cholesterol may regulate human cellular senescence positively. Mevalonate kinase and phosphomevalonate kinase pathway, that induces premature cell senescence, promotes the Estrogen-Related Receptor alpha (ERRα). ERRα induces mitochondrial dysfunction, increase ROS production, DNA damage and leads to a p53-dependent cell senescence. Cholesterol biosynthesis has been hypothesized to activate ERRa during PMVKinduced cell senescence (101).

#### **5** Conclusion

Exposure to traffic or traumatic noise may be linked to significant changes in cellular signaling pathways associated with AMPK, mTOR, telomerase activity, and tumor suppressor proteins like p53, p21, p16, and pro-inflammatory cytokines. Noise pollution also may induce cell aging by increase in the level of glycocorticoides and glucose. These pathways illustrate a complex response to environmental stressors, wherein cells attempt to manage energy balance, growth, and survival amid the detrimental effects of chronic noise exposure. This growing body of research underscores the importance of understanding how environmental factors like traffic noise can influence cellular dynamics and contribute to health problems.

## Acknowledgment

The authors wish to thank research deputy of Shiraz University of Medical Sciences.

### References

- Slabbekoorn H. Noise pollution. Curr Biol. 2019 Oct 7;29(19):R957-R960. doi: 10.1016/j.cub.2019.07.018. PMID: 31593676.
- World Health Organization. (2010). Noise Retrieved from https://www.who.int/europe/news-room/fact-sheets/item/noise
- Fink DJ. What Is a Safe Noise Level for the Public? Am J Public Health. 2017 Jan;107(1):44-45. doi: 10.2105/AJPH.2016.303527.
- Natarajan N, Batts S, Stankovic KM. Noise-Induced Hearing Loss. J Clin Med. 2023 Mar 17;12(6):2347. doi: 10.3390/jcm12062347. Erratum in: J Clin Med. 2024 Feb 07;13(4):944. doi: 10.3390/jcm13040944.
- Münzel T, Sørensen M, Daiber A. Transportation noise pollution and cardiovascular disease. Nat Rev Cardiol. 2021 Sep;18(9):619-636. doi: 10.1038/s41569-021-00532-5.
- Dzhambov AM, Dimitrova DD. Association between Noise Pollution and Prevalent Ischemic Heart Disease. Folia Med (Plovdiv). 2016 Dec 1;58(4):273-281. doi: 10.1515/folmed-2016-0041.
- Münzel T, Molitor M, Kuntic M, Hahad O, Röösli M, Engelmann N, Basner M, Daiber A, Sørensen M. Transportation Noise Pollution and Cardiovascular Health. Circ Res. 2024 Apr 26;134(9):1113-1135. doi: 10.1161/CIRCRESAHA.123.323584.
- Zhou L, Wu B, Tang M, Li G, Chan W, Song L, Wang J, Zhu L, Lin L, Lian Y. Association between exposure to metalworking fluid aerosols, occupational noise and chronic kidney disease: a cross-sectional study in China. BMC Public Health. 2024 Jun 4;24(1):1495. doi: 10.1186/s12889-024-19006-7

- Kim YJ, Choi WJ, Ham S, Kang SK, Lee W. Association between occupational or environmental noise exposure and renal function among middle-aged and older Korean adults: a cross-sectional study. Sci Rep. 2021 Dec 16;11(1):24127. doi: 10.1038/s41598-021-03647-4
- Patel SV, DeCarlo CM, Book SA, Schormans AL, Whitehead SN, Allman BL, Hayes SH. Noise exposure in early adulthood causes age-dependent and brain region-specific impairments in cognitive function. Front Neurosci. 2022 Oct 13;16:1001686. doi: 10.3389/fnins.2022.1001686.
- Münzel T, Sørensen M. Noise Pollution and Arterial Hypertension. Eur Cardiol. 2017 Aug;12(1):26-29. doi: 10.15420/ecr.2016:31:2.
- Auger N, Duplaix M, Bilodeau-Bertrand M, Lo E, Smargiassi A. Environmental noise pollution and risk of preeclampsia. Environ Pollut. 2018 Aug;239:599-606. doi: 10.1016/j.envpol.2018.04.060. Epub 2018 Apr 25. Erratum in: Environ Pollut. 2018 Oct;241:1191. doi: 10.1016/j.envpol.2018.07.022.
- Li W, Ruan W, Yi G, Chen Z, Wang D. Association of noise exposure with risk of metabolic syndrome: Evidence from 44,698 individuals. Diabetes Res Clin Pract. 2021 Aug;178:108944. doi: 10.1016/j.diabres.2021.108944.
- Huang T, Chan TC, Huang YJ, Pan WC. The Association between Noise Exposure and Metabolic Syndrome: A Longitudinal Cohort Study in Taiwan. Int J Environ Res Public Health. 2020 Jun 14;17(12):4236. doi: 10.3390/ijerph17124236.
- Dehaghi BF, Mohammadi A, Amiri A. Investigation of the Relationship between Noise-Induced Hearing Loss and Metabolic Syndrome in One of the Oil Industries in the South of Iran. Indian J Otolaryngol Head Neck Surg. 2023 Apr;75(Suppl 1):43-49. doi: 10.1007/s12070-022-03187-x.
- Cotanche DA, Petrell A, Picard DA. Structural reorganization of hair cells and supporting cells during noise damage, recovery and regeneration in the chick cochlea. Ciba Found Symp. 1991;160:131-42; discussion 142-50. doi: 10.1002/9780470514122.ch7.
- Monsefi M, 

   Bahoddini A, Nazemi S, Dehghani GA. Effects of Noise Exposure on the Volume of Adrenal Gland and Serum Levels of Cortisol in Rat. Iran J Med Sci.2006; 31(1):5-8
- Monsefi, M., Dehghani, F., & Vojdani, Z. (2011). Noise exposure of pregnant mice induces heart defects in their fetuses. Toxicological & Environmental Chemistry, 93(4), 780–788. https://doi.org/10.1080/02772248.2011.552506
- Kesar AG. Effect of prenatal chronic noise exposure on the growth and development of body and brain of chick embryo. Int J Appl Basic Med Res. 2014 Jan;4(1):3-6. doi: 10.4103/2229-516X.125666.
- Kumar V, Nag TC, Sharma U, Mewar S, Jagannathan NR, Wadhwa S. High resolution 1H NMR-based metabonomic study of the auditory cortex analogue of developing chick (Gallus gallus domesticus) following prenatal chronic loud music and noise exposure. Neurochem Int. 2014 Oct;76:99-108. doi: 10.1016/j.neuint.2014.07.002.
- Nawrot PS, Cook RO, Staples RE. Embryotoxicity of various noise stimuli in the mouse. Teratology. 1980 Dec;22(3):279-89. doi: 10.1002/tera.1420220304.
- Monsefi M Z, Talaei T. Changes of Heart Glycoconjugates by Noise Stress in Mouse as an Experimental Model, Journal of Applied Animal Research, 2005, 27:2, 121-124, DOI: 10.1080/09712119.2005.9706554
- Talaei-Khozani T, Monsefi M, Vojdani Z, Dehghani F. Histochemical Study of the Effects of Noise on the Cell Surface and Extracellular Matrix Glycoconjugates of the Developing Mouse Cochlea, Journal of Applied Animal Research, 2007, 31:2, 209-212, DOI: 10.1080/09712119.2007.9706666
- Talaei T, Monsefi M, Vojdani Z, Dehghani F, Arab M R. Effects of noise on the distribution of the cell surface glycoconjugates in the developing mouse spiral ganglion. Tehran Univ Med J 2007; 65 (6):1-6
- Morakinyo AO, Samuel TA, Awobajo FO, Adekunbi DA, Olatunji IO, Binibor FU, Oni AF. Adverse effects of noise stress on glucose homeostasis and insulin resistance in Sprague-Dawley rats. Heliyon. 2019 Dec 12;5(12):e03004. doi: 10.1016/j.heliyon.2019.e03004.

- 26. Wang H, Wang Y, Chai Y, Zhang H, Chang Q, Li J, Zhang R, Bao J. Prolonged exposure to a music-enriched environment mitigates acute noise-induced inflammation and apoptosis in the chicken spleen by modulating the Keap-1/Nrf2 and NF-κB pathways. Poult Sci. 2024 Oct;103(10):104100. doi: 10.1016/j.psj.2024.104100.
- Demirel R., Mollaoğlu H., Yeşilyurt H., Üçok K., Ayçiçek A., Akkaya M., Genç A., Uygur R., Doğan M. Noise induces oxidative stress in rat. Eur. J. Gen. Med. 2009;6:20–24.
- Lee J, Cho YS, Jung H, Choi I. Pharmacological Regulation of Oxidative Stress in Stem Cells. Oxid Med Cell Longev. 2018 Sep 30;2018:4081890. doi: 10.1155/2018/4081890.
- Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev. 2008 Apr;88(2):557-79. doi: 10.1152/physrev.00026.2007.
- Hahad O, Frenis K, Kuntic M, Daiber A, Münzel T. Accelerated Aging and Age-Related Diseases (CVD and Neurological) Due to Air Pollution and Traffic Noise Exposure. Int J Mol Sci. 2021 Feb 28;22(5):2419. doi: 10.3390/ijms22052419.
- Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev. 2019 Apr 1;99(2):1047-1078. doi: 10.1152/physrev.00020.2018.
- Sapieha P, Mallette FA. Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest. Trends Cell Biol. 2018 Aug;28(8):595-607. doi: 10.1016/j.tcb.2018.03.003.
- Mirmohammadi S, Khanjani N, Nazarkhani F, Abediankenari S, Yazdani J, Tilaki RAD. The effect of noise and dust exposure on oxidative stress among livestock and poultry feed industry workers. Toxicol Ind Health. 2020 Nov;36(11):908-915. doi: 10.1177/0748233720962253.
- 34. Lasheen SS, Refaat SH, EI-Nefiawy NE, Abd-Elgawad RM, Othman AI, Olama NKh. Developmental characteristics of rat testicular tissue and the impact of chronic noise stress exposure in the prenatal and postnatal periods. Anat Physiol 2015; doi:10.4172/2161-0940.S4-00.
- Fetoni AR, Bielefeld EC, Paludetti G, Nicotera T, Henderson D. A
  putative role of p53 pathway against impulse noise induced
  damage as demonstrated by protection with pifithrin-alpha and a
  Src inhibitor. Neurosci Res. 2014 Apr-May;81-82:30-7. doi:
  10.1016/j.neures.2014.01.006.
- Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev. 2020 May;59:101036. doi: 10.1016/j.arr.2020.101036.
- Gorgoulis V., Adams P.D., Alimonti A., Bennett D.C., Bischof O., Bishop C., Campisi J., Collado M., Evangelou K., Ferbeyre G., et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179:813–827. doi: 10.1016/j.cell.2019.10.005
- Zhu X, Chen Z, Shen W, Huang G, Sedivy JM, Wang H, Ju Z. Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther. 2021 Jun 28;6(1):245. doi: 10.1038/s41392-021-00646-9.
- Roger L, Tomas F, Gire V. Mechanisms and Regulation of Cellular Senescence. Int J Mol Sci. 2021 Dec 6;22(23):13173. doi: 10.3390/ijms222313173.
- Uyar B, Palmer D, Kowald A, Murua Escobar H, Barrantes I, Möller S, Akalin A, Fuellen G. Single-cell analyses of aging, inflammation and senescence. Ageing Res Rev. 2020 Dec;64:101156. doi: 10.1016/j.arr.2020.101156.
- Victorelli S, Passos JF. Telomeres and Cell Senescence Size Matters Not. EBioMedicine. 2017 Jul;21:14-20. doi: 10.1016/j.ebiom.2017.03.027.
- Cayo A, Segovia R, Venturini W, Moore-Carrasco R, Valenzuela C, Brown N. mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership. Int J Mol Sci. 2021 Jul 29;22(15):8149. doi: 10.3390/ijms22158149
- Panwar, V., Singh, A., Bhatt, M. et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Sig Transduct Target Ther 8, 375 (2023). https://doi.org/10.1038/s41392-023-01608-z
- Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017 Mar 9;168(6):960-976. doi: 10.1016/j.cell.2017.02.004. Erratum in: Cell. 2017 Apr 6;169(2):361-371. doi: 10.1016/j.cell.2017.03.035.

- Wu CW, Storey KB. mTOR Signaling in Metabolic Stress Adaptation. Biomolecules. 2021 May 1;11(5):681. doi: 10.3390/biom11050681.
- 46. Li B, Khan MZ, Khan IM, Ullah Q, Cisang ZM, Zhang N, Wu D, Huang B, Ma Y, Khan A, Jiang N, Zahoor M. Genetics, environmental stress, and amino acid supplementation affect lactational performance via mTOR signaling pathway in bovine mammary epithelial cells. Front Genet. 2023 Aug 10;14:1195774. doi: 10.3389/fgene.2023.1195774.
- Miwa S, Kashyap S, Chini E, von Zglinicki T. Mitochondrial dysfunction in cell senescence and aging. J Clin Invest. 2022 Jul 1:132(13):e158447. doi: 10.1172/JCI158447.
- Daiber A, Kröller-Schön S, Oelze M, Hahad O, Li H, Schulz R, Steven S, Münzel T. Oxidative stress and inflammation contribute to traffic noise-induced vascular and cerebral dysfunction via uncoupling of nitric oxide synthases. Redox Biol. 2020 Jul;34:101506. doi: 10.1016/j.redox.2020.101506
- Faraonio R. Oxidative Stress and Cell Senescence Process. Antioxidants (Basel). 2022 Aug 30;11(9):1718. doi: 10.3390/antiox11091718.
- Nousis L, Kanavaros P, Barbouti A. Oxidative Stress-Induced Cellular Senescence: Is Labile Iron the Connecting Link? Antioxidants (Basel). 2023 Jun 10;12(6):1250. doi: 10.3390/antiox12061250.
- von Zglinicki T. Oxidative stress and cell senescence as drivers of ageing: Chicken and egg. Ageing Res Rev. 2024 Dec;102:102558. doi: 10.1016/j.arr.2024.102558.
- 52. Hahad O, Frenis K, Kuntic M et al (2021) Accelerated aging and age-related diseases (CVD and neurological) due to air pollution and traffic noise exposure. Int J Mol Sci 22:1–23. 10.3390/ijms22052419 10.3390/ijms22052419
- 53. Arregi A, Vegas O, Lertxundi A, Silva A, Ferreira I, Bereziartua A, Cruz MT, Lertxundi N. Road traffic noise exposure and its impact on health: evidence from animal and human studieschronic stress, inflammation, and oxidative stress as key components of the complex downstream pathway underlying noise-induced non-auditory health effects. Environ Sci Pollut Res Int. 2024 Jul;31(34):46820-46839. doi: 10.1007/s11356-024-33973-9.
- Meillère A, Brischoux F, Ribout C, Angelier F. Traffic noise exposure affects telomere length in nestling house sparrows. Biol Lett. 2015 Sep;11(9):20150559. doi: 10.1098/rsbl.2015.0559.
- 55. Sapozhnikova YP, Koroleva AG, Yakhnenko VM, Khanaev IV, Glyzina OY, Avezova TN, Volkova AA, Mushinskaya AV, Tyagun ML, Shagun AN, Makarov MM, Kirilchik SV, Sudakov NP, Klimenkov IV, Sukhanova LV. Sex Associated Effects of Noise Pollution in Stone Sculpin (Paracottus knerii) as a Model Object in the Context of Human-Induced Rapid Environmental Change. Biology (Basel). 2021 Oct 19;10(10):1063. doi: 10.3390/biology10101063.
- 56. Sapozhnikova YP, Koroleva AG, Yakhnenko VM, Tyagun ML, Glyzina OY, Coffin AB, Makarov MM, Shagun AN, Kulikov VA, Gasarov PV, Kirilchik SV, Klimenkov IV, Sudakov NP, Anoshko PN, Kurashova NA, Sukhanova LV. Molecular and cellular responses to long-term sound exposure in peled (Coregonus peled). J Acoust Soc Am. 2020 Aug;148(2):895. doi: 10.1121/10.0001674.
- Guo Y, Guan T, Shafiq K, Yu Q, Jiao X, Na D, Li M, Zhang G, Kong J. Mitochondrial dysfunction in aging. Ageing Res Rev. 2023 Jul;88:101955. doi: 10.1016/j.arr.2023.101955.
- Chen FQ, Zheng HW, Hill K, Sha SH. Traumatic noise activates Rho-family GTPases through transient cellular energy depletion. J Neurosci. 2012 Sep 5;32(36):12421-30. doi: 10.1523/JNEUROSCI.6381-11.2012.
- Korolchuk VI, Miwa S, Carroll B, von Zglinicki T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine. 2017 Jul;21:7-13. doi: 10.1016/j.ebiom.2017.03.020. Epub 2017 Mar 14.
- Ziegler DV, Wiley CD, Velarde MC. Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging Cell. 2015 Feb;14(1):1-7. doi: 10.1111/acel.12287. Epub 2014 Nov 14.
- Correia-Melo C, Passos JF. Mitochondria: Are they causal players in cellular senescence? Biochim Biophys Acta. 2015 Nov;1847(11):1373-9. doi: 10.1016/j.bbabio.2015.05.017.

- Ning L, Gao L, Zhang F, Li X, Wang T. Mechanical Stretch Induces Annulus Fibrosus Cell Senescence through Activation of the RhoA/ROCK Pathway. Biomed Res Int. 2021 Nov 19;2021:5321121. doi: 10.1155/2021/5321121.
- Lim IK, Hong KW, Kwak IH, Yoon G, Park SC. Translocational inefficiency of intracellular proteins in senescence of human diploid fibroblasts. Ann N Y Acad Sci. 2001 Apr;928:176-81. doi: 10.1111/j.1749-6632.2001.tb05647.x.
- 64. Kortlever RM, Brummelkamp TR, van Meeteren LA, Moolenaar WH, Bernards R. Suppression of the p53-dependent replicative senescence response by lysophosphatidic acid signaling. Mol Cancer Res. 2008 Sep;6(9):1452-60. doi: 10.1158/1541-7786.MCR-08-0066.
- Cammarano MS, Nekrasova T, Noel B, Minden A. Pak4 induces premature senescence via a pathway requiring p16INK4/p19ARF and mitogen-activated protein kinase signaling. Mol Cell Biol. 2005 Nov;25(21):9532-42. doi: 10.1128/MCB.25.21.9532-9542.2005.
- 66. Osaki JH, Espinha G, Magalhaes YT, Forti FL. Modulation of RhoA GTPase Activity Sensitizes Human Cervix Carcinoma Cells to γ-Radiation by Attenuating DNA Repair Pathways. Oxid Med Cell Longev. 2016;2016:6012642. doi: 10.1155/2016/6012642.
- 67. Kvandová M, Kalinovic S, Schmal I, Stamm P, Frenis K, Daiber A, Oelze MM, Schulz E, Steven S, Jansen T, Münze Tl, Kröller-Schön S. Pharmacological activation of AMPK prevents aircraft noise induced oxidative stress, endothelial dysfunction and vascular
- Weichhart T. mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review. Gerontology. 2018;64(2):127-134. doi: 10.1159/000484629. Epub 2017 Dec 1.
- Meillère A, Brischoux F, Ribout C, Angelier F. Traffic noise exposure affects telomere length in nestling house sparrows. Biol Lett. 2015 Sep;11(9):20150559. doi: 10.1098/rsbl.2015.0559.
- Crino OL, Johnson EE, Blickley JL, Patricelli GL, Breuner CW. Effects of experimentally elevated traffic noise on nestling whitecrowned sparrow stress physiology, immune function and life history. J Exp Biol. 2013 Jun 1;216(Pt 11):2055-62. doi: 10.1242/jeb.081109.
- Crino OL, Van Oorschot BK, Johnson EE, Malisch JL, Breuner CW. Proximity to a high traffic road: glucocorticoid and life history consequences for nestling white-crowned sparrows. Gen Comp Endocrinol. 2011 Sep 1;173(2):323-32. doi: 10.1016/j.ygcen.2011.06.001.
- Cantuaria ML, Usemann J, Proietti E, Blanes-Vidal V, Dick B, Flück CE, Rüedi S, Héritier H, Wunderli JM, Latzin P, Frey U, Röösli M, Vienneau D; BILD study group. Glucocorticoid metabolites in newborns: A marker for traffic noise related stress? Environ Int. 2018 Aug;117:319-326. doi: 10.1016/j.envint.2018.05.002.
- Taban E , Mortazavi SB, Vosoughi S3 , Khavanin A , Asilian Mahabadi H. Noise Exposure Effects on Blood Glucose, Cortisol and Weight Changes in the Male Mice. Health Scope: 2016,6(2); e36108
- Lin J, Epel E. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev. 2022 Jan;73:101507. doi: 10.1016/j.arr.2021.101507.
- Escoter-Torres L, Caratti G, Mechtidou A, Tuckermann J, Uhlenhaut NH, Vettorazzi S, 2019. Fighting the fire: mechanisms of inflammatory gene regulation by the glucocorticoid receptor. Front. Immunol 10, 1859. 10.3389/fimmu.2019.01859
- Shang D, Liu H, Tu Z. Pro-inflammatory cytokines mediating senescence of vascular endothelial cells in atherosclerosis. Fundam Clin Pharmacol. 2023 Oct;37(5):928-936. doi: 10.1111/fcp.12915.
- Malaise O, Paulissen G, Deroyer C, Ciregia F, Poulet C, Neuville S, Plener Z, Daniel C, Gillet P, Lechanteur C, Brondello JM, de Seny D, Malaise M. Influence of Glucocorticoids on Cellular Senescence Hallmarks in Osteoarthritic Fibroblast-like Synoviocytes. J Clin Med. 2021 Nov 16;10(22):5331. doi: 10.3390/jcm10225331.
- Zheng L, Li M, Li H. High Glucose Promotes and Aggravates the Senescence and Dysfunction of Vascular Endothelial Cells in Women with Hyperglycemia in Pregnancy. Biomolecules. 2024 Mar 10;14(3):329. doi: 10.3390/biom14030329.

- Ramini, D., Giuliani, A., Kwiatkowska, K.M. et al. Replicative senescence and high glucose induce the accrual of self-derived cytosolic nucleic acids in human endothelial cells. Cell Death Discov. 10, 184 (2024). https://doi.org/10.1038/s41420-024-01954-z.
- Bertelli PM, Pedrini E, Hughes D, McDonnell S, Pathak V, Peixoto E, Guduric-Fuchs J, Stitt AW, Medina RJ. Long term high glucose exposure induces premature senescence in retinal endothelial cells. Front Physiol. 2022 Aug 26;13:929118. doi: 10.3389/fphys.2022.929118.
- Zhang D, Lu H, Chen Z, Wang Y, Lin J, Xu S, Zhang C, Wang B, Yuan Z, Feng X, Jiang X, Pan J. High glucose induces the aging of mesenchymal stem cells via Akt/mTOR signaling. Mol Med Rep. 2017 Aug;16(2):1685-1690. doi: 10.3892/mmr.2017.6832. Epub 2017 Jun 21.
- Pham HL, Pham PV. High glucose induces early senescence in adipose-derived stem cells by accelerating p16 and mTOR. Biomedical Research and Therapy. 2019; 6(6): 3213-3221
- Maeda M, Hayashi T, Mizuno N, Hattori Y, Kuzuya M. Intermittent high glucose implements stress-induced senescence in human vascular endothelial cells: role of superoxide production by NADPH oxidase. PLoS One. 2015 Apr 16;10(4):e0123169. doi: 10.1371/journal.pone.0123169.
- 84. Wu F, Hill K, Fang Q, He Z, Zheng H, Wang X, Xiong H, Sha SH. Traumatic-noise-induced hair cell death and hearing loss is mediated by activation of CaMKKβ. Cell Mol Life Sci. 2022 Apr 19;79(5):249. doi: 10.1007/s00018-022-04268-4.
- Begam N , Bashar A. Auditory effects and consequences of noise pollution in humans: A scoping review. Adv Treat. ENT Disord. 2020; 4: 006-010, doi.org/10.29328/journal.ated.1001011
- Terrell K, Choi S, Choi S. Calcium's Role and Signaling in Aging Muscle, Cellular Senescence, and Mineral Interactions. Int J Mol Sci. 2023 Dec 1;24(23):17034. doi: 10.3390/ijms242317034
- Farahbakht E, Alsinani Y, Safari M, Hofmeister M, Rezaie R, Sharifabadi A, Jahromi, M. Immunoinflammatory Response to Acute Noise Stress in Male Rats Adapted with Different Exercise Training. Noise & Health 25(119):p 226-235, October-December 2023. | DOI: 10.4103/nah.nah\_23\_23
- 88. Molitor M, Bayo-Jimenez MT, Hahad O, Witzler C, Finger S, Garlapati VS, Rajlic S, Knopp T, Bieler TK, Aluia M, Wild J, Lagrange J, Blessing R, Rapp S, Schulz A, Kleinert H, Karbach S, Steven S, Ruf W, Wild P, Daiber A, Münzel T, Wenzel P. Aircraft noise exposure induces pro-inflammatory vascular conditioning and amplifies vascular dysfunction and impairment of cardiac function after myocardial infarction. Cardiovasc Res. 2023 Jun 13;119(6):1416-1426. doi: 10.1093/cvr/cvad021.
- Bijani S, Naserzadeh P, Hosseini MJ. Protective impact of Betanin against noise and scrotal hyperthermia on testicular toxicity in Wistar rat: Role of apoptosis, oxidative stress and inflammation. Heliyon. 2024 Sep 24;10(19):e38289. doi: 10.1016/j.heliyon.2024.e38289.
- Tylutka A, Walas Ł and Zembron-Lacny A (2024) Level of IL-6, TNF, and IL-1β and age-related diseases: a systematic review and meta-analysis. Front. Immunol. 15:1330386. doi: 10.3389/fimmu.2024.1330386
- Ortiz-Montero, P., Londoño-Vallejo, A. & Vernot, JP. Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun Signal 15, 17 (2017). https://doi.org/10.1186/s12964-017-0172
- Kandhaya-Pillai R, Yang X, Tchkonia T, Martin GM, Kirkland JL, Oshima J. TNF-α/IFN-γ synergy amplifies senescence-associated inflammation and SARS-CoV-2 receptor expression via hyperactivated JAK/STAT1. Aging Cell. 2022 Jun;21(6):e13646. doi: 10.1111/acel.13646.
- Mohammadi H, Alimohammadi I, Roshani S, Pakzad R, Abdollahi MB, Dehghan SF. The Effect of Occupational Noise Exposure on Blood and Biochemical Parameters: A Case Study of an Insulator Manufacturer in Iran. Electron Physician. 2016 Jan 15;8(1):1740-6. doi: 10.19082/1740.
- 94. Mehrdad R, Malek Bahabad A, Nahan Moghaddam A. Relationship between Exposure to Industrial Noise and Serum Lipid Profile. Acta Med Iran. 1;49(11):725-729.

- Demir MG, Aydin S. The Effect of the Cholesterol Levels on Noise-Induced Hearing Loss. Int Arch Otorhinolaryngol. 2018 Jan;22(1):19-22. doi: 10.1055/s-0037-1602774.
- Lee J, Yang J, Kim J, Jang Y, Lee J, Han D, Kim H, Jeong BC, Seong JK. Effects of Environmental Noise Stress on Mouse Metabolism. Int J Mol Sci. 2024 Oct 12;25(20):10985. doi: 10.3390/ijms252010985.
- 97. Pu DR, Liu L. HDL slowing down endothelial progenitor cells senescence: a novel anti-atherogenic property of HDL. Med Hypotheses. 2008;70(2):338-42. doi: 10.1016/j.mehy.2007.05.025.
- Millner A, Atilla-Gokcumen GE. Lipid Players of Cellular Senescence. Metabolites. 2020 Aug 21;10(9):339. doi: 10.3390/metabo10090339.
- 99. Mutlu AS, Duffy J, Wang MC. Lipid metabolism and lipid signals in aging and longevity. Dev Cell. 2021 May 17;56(10):1394-1407. doi: 10.1016/j.devcel.2021.03.034.
- 100.Mutlu AS, Duffy J, Wang MC. Lipid metabolism and lipid signals in aging and longevity. Dev Cell. 2021 May 17;56(10):1394-1407. doi: 10.1016/j.devcel.2021.03.034.
- 101.Ziegler, D.V., Czarnecka-Herok, J., Vernier, M. et al. Cholesterol biosynthetic pathway induces cellular senescence through ERRα. npj Aging 10, 5 (2024). https://doi.org/10.1038/s41514-023-00128-y