

J. Environ. Treat. Tech. ISSN: 2309-1185

Advancing Environmental Engineering: The Role of Artificial Intelligence in Sustainable Solutions – A Short Review

Amirreza Talaie 1,2,3, Hesam Kamyab4,5, Ashkan Razmfarsa6

Department of Civil Engineering, Jami Institute of Technology, Isfahan, Iran
Plant Design Department, Pars Abnoos Sanat Consulting Engineering Company, Shiraz, Iran
Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan
Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
Department of Management, Strome College of Business, Old Dominion University, USA

Abstract

Artificial intelligence (AI) has emerged as a transformative force in environmental engineering, offering innovative solutions to complex environmental challenges. From air pollution monitoring and water resource management to waste management, climate change mitigation, and ecological preservation, AI is revolutionizing the way we address environmental issues. Machine learning, neural networks, and other AI technologies are enabling more accurate predictions, optimizing resource use, and improving conservation efforts. However, despite its many advantages, AI also faces challenges such as data availability, energy consumption, ethical concerns, and the need for transparency. This review explores the diverse applications of AI in environmental engineering, highlighting the current advancements, challenges, and future directions. As AI technologies continue to evolve, they hold the potential to create smarter, greener, and more sustainable solutions, ultimately contributing to a healthier and more sustainable world.

Keywords: Artificial intelligence, environmental engineering, air pollution, ecological preservation, sustainability

1 Introduction

Environmental challenges, such as air and water pollution, waste management, and climate change, are becoming increasingly complex due to rapid urbanization, industrialization, and population growth (1, 2). Addressing these issues requires innovative and interdisciplinary approaches that combine advanced technologies with environmental science. In recent years, artificial intelligence (AI) has emerged as a transformative tool in environmental engineering, offering unprecedented opportunities to address these challenges effectively and sustainably (3). AI, with its ability to process and analyze large volumes of data, is revolutionizing how environmental problems are understood, monitored, and mitigated. Traditional methods often struggle with the scale and complexity of environmental data, which includes diverse sources such as sensor networks, satellite imagery, and laboratory measurements. AI technologies, particularly machine learning (ML), neural networks, and natural language processing (NLP), provide robust solutions by identifying patterns, optimizing processes, and making predictions with high accuracy (4). These capabilities are

increasingly recognized as essential in environmental engineering for both research and practical applications.

The integration of AI in environmental engineering has shown promising results across various domains (5). For instance, machine learning models are widely used to predict air pollution levels, assess water quality, and optimize waste management processes (6, 7). Neural networks enhance the performance of climate models by improving the accuracy of weather and greenhouse gas predictions. NLP tools are applied to analyze environmental reports and extract valuable insights, contributing to better policy-making and resource management (8). Despite these advancements, the application of AI in environmental engineering also presents challenges. Issues such as the availability of high-quality data, the energy consumption of AI systems, and ethical concerns, including bias in algorithms, require careful consideration (9). AI applications require teamwork between environmental scientists, engineers, and data scientists to fully unlock their potential.

This review aims to explore the current state of AI applications in environmental engineering, highlighting key areas where AI has made significant contributions. It also examines the

^{*} Corresponding author: Amirreza Talaie, (1) Department of Civil Engineering, Jami Institute of Technology, Isfahan, Iran; (2) Plant Design Department, Pars Abnoos Sanat Consulting Engineering Company, Shiraz, Iran; and (3) Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan, E-mail: amirtkh@yahoo.com

limitations and future directions of AI in this field, offering a comprehensive overview for researchers and practitioners. By addressing both the opportunities and challenges, this paper seeks to provide a foundation for advancing the integration of AI into environmental engineering and fostering sustainable development.

2 Air Pollution Monitoring and Prediction

Air pollution poses significant risks to human health, ecosystems, and the global climate (10-12). Accurate monitoring and prediction of air quality are critical for mitigating these impacts and implementing timely interventions (13). Traditional air pollution monitoring relies on networks of fixed sensors and manual data analysis, which often struggle to provide real-time, spatially comprehensive, and predictive insights (14). AI has emerged as a powerful solution, revolutionizing air pollution monitoring and prediction through its capacity to handle vast datasets and uncover complex patterns that traditional methods might miss (7). AI-powered systems leverage data from diverse sources, including ground-based sensors, satellite imagery, weather stations, and traffic patterns, to provide detailed and realtime insights into air pollution levels. These systems utilize advanced ML algorithms to process and analyze this data, identifying pollution hotspots, temporal trends, and contributing factors. For instance, deep learning models, a subset of ML, are particularly effective in processing nonlinear and highdimensional data, enabling the identification of intricate relationships between meteorological conditions and pollutant concentrations. One of the most significant advantages of AI in air pollution management is its predictive capabilities (15). AI models can forecast future air quality conditions by learning from historical data and integrating it with real-time inputs (16). These predictions help stakeholders anticipate pollution events, such as smog episodes, and take preventive measures. For example, machine learning algorithms have been used to predict the dispersion of pollutants from industrial sites and urban traffic, enabling authorities to implement temporary restrictions or emission controls during high-risk periods.

Satellite data has further enhanced AI's role in air quality monitoring (17). Satellites equipped with sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) or the TROPOspheric Monitoring Instrument (TROPOMI) provide large-scale data on atmospheric pollutants such as nitrogen dioxide, sulfur dioxide, and particulate matter. AI models process this data to generate high-resolution air quality maps, offering valuable insights into regional and global pollution trends. Moreover, integrating satellite data with ground-based measurements through AI frameworks ensures accuracy and reliability in monitoring systems. AI tools also aid governments and industries by providing actionable insights and decisionmaking support. For example, AI systems can suggest optimal locations for installing air quality sensors based on predicted pollution patterns, ensuring efficient resource allocation. In urban planning, AI models can simulate the impact of proposed infrastructure projects on air quality, enabling the design of greener and healthier cities. Industries can use AI to monitor emissions in real-time, ensuring compliance with environmental regulations and reducing their ecological footprint (18). While the benefits of AI in air pollution monitoring and prediction are vast, challenges remain. The accuracy of AI models heavily depends on the quality and availability of data (19). In regions with limited air quality monitoring infrastructure, data gaps can hinder the effectiveness of AI systems. Additionally, the energy

requirements for processing large datasets can be substantial, raising concerns about the carbon footprint of AI technologies (20). Despite these challenges, ongoing advancements in AI algorithms, coupled with increasing investments in environmental monitoring infrastructure, are expected to further enhance the role of AI in combating air pollution (3).

AI has significantly advanced air pollution monitoring and prediction by providing real-time, predictive, and actionable insights. Through the integration of diverse datasets and the application of sophisticated algorithms, AI empowers governments, industries, and communities to make informed decisions for protecting air quality and public health.

3 Water Resource Management

Effective water resource management is critical for ensuring the availability, quality, and sustainability of this vital resource (21). Traditional methods often face challenges in addressing the increasing complexities of water demand, pollution, and climate variability. Artificial intelligence (AI) has emerged as a gamechanging tool in this field, providing advanced solutions to optimize water use, improve treatment processes, and enhance the overall management of water systems.

3.1 Detection of Water Leaks

One of the key applications of AI in water resource management is the detection of water leaks in distribution networks (22). Leaks are a major cause of water loss in urban systems, often going undetected for extended periods and leading to significant economic and environmental impacts. AI-powered systems use data from pressure sensors, flow meters, and acoustic devices to identify anomalies that may indicate leaks (23). Machine learning algorithms analyze these data patterns in real-time, enabling the pinpointing of leak locations with high accuracy. By reducing water wastage, these systems improve resource efficiency and help utilities save costs.

3.2 Prediction of Water Demand

AI plays a crucial role in predicting water demand, which is essential for efficient planning and allocation of resources (24). Machine learning models can analyze historical consumption data alongside factors like population growth, weather conditions, and economic activities to forecast future water needs (25). These predictions help water utilities maintain adequate supply levels, especially during peak demand periods or drought conditions. Additionally, AI-based demand forecasting supports better infrastructure planning, reducing the risks of overbuilding or underbuilding water supply systems.

3.3 Optimization of Irrigation

Agriculture is the largest consumer of freshwater globally, making irrigation management a critical area for improvement (26). AI systems optimize irrigation by analyzing data from soil moisture sensors, weather forecasts, and crop growth models (27). These systems ensure that crops receive the right amount of water at the right time, minimizing waste and enhancing agricultural productivity. Advanced AI models can also adapt to changing conditions, such as unexpected rainfall or heatwaves, by dynamically adjusting irrigation schedules. This approach not only conserves water but also supports sustainable farming practices.

3.4 Enhancing Wastewater Treatment

In wastewater treatment, AI improves the efficiency of biological and chemical processes by optimizing operational parameters (28). Machine learning models analyze data from treatment plants, such as flow rates, pollutant concentrations, and microbial activity, to fine-tune aeration, chemical dosing, and sludge management processes. This leads to reduced energy consumption, lower operational costs, and improved effluent quality. AI can also detect and predict process failures, enabling proactive maintenance and ensuring regulatory compliance (29).

3.5 Identifying Pollution Sources in Rivers and Lakes

AI systems are increasingly used to identify and monitor pollution sources in water bodies such as rivers and lakes (30). Satellite imagery, drone data, and ground-based sensors provide vast amounts of information about water quality. AI models process this data to detect pollutant hotspots, trace contamination pathways, and identify probable pollution sources, such as agricultural runoff or industrial discharge. These insights are invaluable for authorities in developing targeted mitigation strategies and protecting aquatic ecosystems.

4 Waste Management

Effective waste management is essential for addressing environmental challenges, reducing resource depletion, and promoting sustainability (31). Traditional waste management systems often face inefficiencies in sorting, recycling, and predicting waste volumes. AI is revolutionizing this sector by introducing smart solutions that enhance the efficiency of waste handling and recycling processes while minimizing environmental impacts.

4.1 Automated Sorting Using Computer Vision

One of the most transformative applications of AI in waste management is the use of computer vision to automate waste sorting (32). Sorting recyclable materials from non-recyclables has traditionally been labor-intensive and prone to human error. AI-powered systems equipped with computer vision and robotic arms can identify and separate materials such as plastics, metals, and glass with remarkable accuracy (33). High-resolution cameras capture images of waste items, and machine learning algorithms classify them based on shape, color, and texture. This process not only improves the speed and efficiency of recycling plants but also increases the purity of sorted materials, making them more valuable for reuse.

4.2 Predicting Waste Generation

AI plays a crucial role in forecasting waste generation patterns, helping municipalities and waste management companies plan more effectively (34). Machine learning models analyze historical data on waste production, population growth, and seasonal variations to predict future waste volumes. These predictions enable better allocation of resources, such as optimizing collection routes and scheduling waste processing operations (32). In addition, accurate forecasting helps identify peak waste periods, such as holiday seasons, ensuring that facilities are adequately prepared to handle increased loads.

4.3 Developing Advanced Recycling Strategies

AI systems contribute to the development of smarter recycling strategies by analyzing data on waste composition and recycling trends (35). For example, AI can identify areas where recycling participation is low and recommend targeted awareness

campaigns (34). Additionally, machine learning models can evaluate the feasibility of new recycling technologies, such as chemical recycling for plastics, by assessing their efficiency and economic viability. These insights help policymakers and industries implement more effective recycling programs that reduce reliance on landfills and conserve natural resources.

4.4 Minimizing Landfill Waste

Reducing the volume of waste sent to landfills is a primary goal of sustainable waste management, and AI plays a pivotal role in achieving this (36). AI-powered systems optimize composting and waste-to-energy processes by monitoring key parameters such as temperature, moisture, and gas emissions. This ensures efficient decomposition of organic waste and maximizes energy recovery from non-recyclable materials. Furthermore, AI can identify opportunities for upcycling waste materials, turning them into valuable products such as construction materials or biofuels, further reducing landfill dependency.

5 Climate Change and Energy

Climate change presents one of the most pressing challenges of our time, demanding innovative solutions to mitigate its impacts and transition toward sustainable energy systems (37). AI is playing a transformative role in this field, offering powerful tools to analyze complex climate data, design efficient renewable energy systems, and optimize energy usage across various sectors (38). These advancements are contributing to the global effort to reduce greenhouse gas emissions and combat climate change effectively.

5.1 Climate Change Modeling

AI is revolutionizing climate change modeling by processing vast datasets and identifying patterns in weather and greenhouse gas emissions (39). Traditional climate models rely on computationally intensive simulations, which can be limited by their complexity and time requirements. AI, particularly machine learning, enhances these models by identifying nonlinear relationships among variables such as temperature, precipitation, and atmospheric CO₂ levels (40). Neural networks, for example, can predict future climate scenarios with improved accuracy by integrating historical data with real-time inputs. These predictions provide valuable insights into potential climate risks, enabling governments and organizations to plan more effectively for mitigation and adaptation strategies.

5.2 Designing Renewable Energy Systems

The transition to renewable energy is a cornerstone of combating climate change, and AI is instrumental in advancing this goal (3). AI algorithms optimize the design and operation of renewable energy systems such as wind farms and solar power plants. For example, machine learning models analyze weather patterns, geographic features, and energy demand to determine the optimal placement of wind turbines and solar panels (41). AI also enhances the performance of renewable energy systems by predicting fluctuations in energy generation due to changing weather conditions (42). This ensures a stable and reliable energy supply, reducing reliance on fossil fuels.

5.3 Optimizing Energy Usage in Buildings and Industries

Energy efficiency is critical for reducing carbon footprints, and AI provides innovative solutions to optimize energy consumption in buildings and industries (43). Smart energy management systems powered by AI analyze data from sensors,

utility meters, and appliances to identify inefficiencies and recommend improvements. For instance, AI systems can automatically adjust heating, ventilation, and air conditioning (HVAC) systems in buildings based on occupancy and weather conditions, significantly reducing energy waste (44). In industrial settings, AI monitors energy-intensive processes, such as manufacturing and chemical production, to minimize unnecessary energy usage and emissions.

5.4 Supporting Carbon Capture and Storage (CCS)

AI also plays a role in advancing technologies like carbon capture and storage, which are essential for mitigating emissions from existing infrastructure (45). Machine learning models analyze geological data to identify suitable locations for carbon storage and optimize the operation of capture systems (46). These insights improve the efficiency and cost-effectiveness of carbon capture and storage technologies, making them more viable for large-scale deployment.

6 Ecological Preservation

AI is transforming efforts to preserve ecosystems and protect biodiversity (47). By leveraging advanced technologies, researchers and conservationists can monitor natural habitats more effectively and respond swiftly to threats. AI's ability to process vast amounts of data and recognize patterns makes it an invaluable tool for understanding complex ecological systems and safeguarding endangered species. One of the most significant applications of AI in ecological preservation is the monitoring of wildlife and ecosystems (48). AI-powered drones and camera systems are increasingly used to collect detailed data on animal populations and their movements (49). These tools can operate in remote and challenging environments, capturing images and videos that provide valuable insights into animal behaviors and habitat conditions. For example, AI algorithms can analyze footage from camera traps to identify species, count individuals, and monitor population trends over time (50). This information helps conservationists assess the health of ecosystems and design targeted protection strategies.

AI also plays a crucial role in combating illegal activities such as poaching and deforestation, which threaten biodiversity (51). Surveillance systems equipped with AI can detect suspicious activities, such as the presence of unauthorized vehicles or individuals in protected areas. By analyzing patterns and anomalies in real time, AI systems enable rapid interventions to prevent harm to wildlife and habitats. Some systems even use predictive analytics to anticipate poaching hotspots, allowing authorities to allocate resources more efficiently. Additionally, AI supports broader conservation efforts by facilitating ecosystem modeling and restoration planning (48). Machine learning models can analyze environmental variables, such as temperature, vegetation cover, and water availability, to predict how ecosystems might respond to climate change or human activities (52). These insights guide restoration projects, such as reforestation and habitat creation, to maximize their ecological benefits.

AI is revolutionizing ecological preservation by enhancing monitoring capabilities, preventing illegal activities, and supporting habitat restoration. These technologies provide conservationists with powerful tools to protect endangered species and maintain biodiversity. As AI continues to evolve, it will play an increasingly vital role in preserving the planet's natural ecosystems for future generations.

7 Challenges and Future Directions

The integration of AI in environmental engineering presents numerous opportunities, but it also faces several challenges that need to be addressed. One major obstacle is the reliance on large, high-quality datasets (53). Many regions, especially in developing countries, lack comprehensive monitoring infrastructure and consistent data collection practices. This can lead to incomplete datasets, reducing the accuracy and reliability of AI models used for environmental analysis. Standardization of data formats and global initiatives to improve data availability are essential for overcoming these limitations (54).

Another challenge is the significant energy consumption of AI systems, particularly those based on deep learning (38). Training and operating these systems require vast computational resources, which contribute to greenhouse gas emissions and can undermine the environmental benefits they aim to achieve. To address this issue, researchers are focusing on developing energy-efficient AI algorithms and integrating renewable energy into AI operations. These efforts can help balance the benefits of AI with its environmental impact.

Ethical concerns also play a critical role in the adoption of AI in environmental engineering (9). Bias in AI systems can arise from unrepresentative or incomplete datasets, leading to unfair outcomes. For instance, models may prioritize urban areas with better data coverage, neglecting rural or underserved regions. Moreover, automation of tasks such as waste sorting or pollution monitoring can displace human workers, raising concerns about job security and social equity. Addressing these ethical issues will require efforts to diversify datasets, design fairness-aware algorithms, and involve diverse stakeholders in AI development.

A lack of transparency in AI systems further complicates their adoption (55). Many AI models, particularly deep learning frameworks, function as "black boxes," making it difficult to interpret how decisions are made. This can erode trust, especially in critical applications like climate change modeling or policy formulation. To enhance trust and usability, future developments will focus on explainable AI (XAI) techniques, which aim to make AI decision-making processes more transparent and understandable.

Despite these challenges, the future of AI in environmental engineering is promising. Advances in environmental monitoring technologies, such as IoT sensors and satellite systems, will improve data collection, enabling more accurate and equitable AI applications (55). Efforts to develop energy-efficient algorithms and adopt renewable energy sources will align AI systems with sustainability goals (56). Additionally, addressing bias through diverse datasets and fairness-aware algorithms will make AI solutions more inclusive and reliable. Enhanced transparency through explainable AI will further build trust and acceptance among stakeholders.

AI's integration with policy-making and education will also play a critical role in shaping its future impact (57). By providing actionable insights and raising awareness about environmental issues, AI can support governments, industries, and communities in making informed and sustainable decisions. Collaboration among environmental engineers, policymakers, and AI researchers will be key to overcoming challenges and maximizing AI's potential (3). In the long term, these advancements will empower AI to deliver smarter, greener, and faster solutions, driving progress toward a healthier and more sustainable world.

8 Conclusion

Artificial intelligence is rapidly becoming an indispensable tool in the field of environmental engineering, offering solutions to some of the most pressing challenges of our time. From improving air quality and managing water resources to optimizing waste management, tackling climate change, and preserving ecosystems, AI is helping to shape a sustainable future. While challenges such as data limitations, energy consumption, ethical concerns, and the need for transparency remain, ongoing advancements in AI algorithms and data collection technologies are addressing these issues. With a continued focus on energyefficient models, unbiased data, and explainable AI systems, the future of AI in environmental engineering looks promising. As AI continues to evolve, it will provide even smarter, faster, and greener solutions to environmental problems, empowering engineers, policymakers, and communities to work together toward a more sustainable and resilient world. The role of AI in environmental engineering will only grow in significance, paving the way for innovative strategies that can protect and preserve our planet for future generations.

Acknowledgments

We would like to express our sincere gratitude to the Department of Natural Sciences at West Kazakhstan Marat Ospanov Medical University for their invaluable support in the development of this paper. Special thanks to the faculty and staff for their continued guidance, encouragement, and assistance throughout this research. Their dedication to fostering academic growth and advancing scientific understanding has played a crucial role in the successful completion of this study.

Ethical issue

Authors are aware of and comply with, best practices in publication ethics specifically about authorship (avoidance of guest authorship), dual submission, manipulation of figures, competing interests, and compliance with policies on research ethics. Authors adhere to publication requirements that the submitted work is original and has not been published elsewhere in any language.

Competing interests

The authors declare that no conflict of interest would prejudice the impartiality of this scientific work.

Authors' contribution

All authors of this study have a complete contribution to data collection, data analyses, and manuscript writing.

Declaration of generative AI and AI-assisted technologies in the writing process

During the preparation of this work, the authors used ChatGPT to enhance the manuscript writing. After using this tool, the authors reviewed and edited the content as needed and took full responsibility for the content of this manuscript.

References

- Koop SH, van Leeuwen CJJE, development, sustainability. The challenges of water, waste and climate change in cities. 2017;19(2):385-418.
- Ghanbarnejad P, Goli A, Bayat B, Barzkar H, Talaiekhozani A, Bagheri M, et al. Evaluation of formaldehyde adsorption by human

- hair and sheep wool in industrial wastewater with high concentration. Journal of Environmental Treatment Techniques. 2014;2(1):17.
- Bibri SE, Krogstie J, Kaboli A, Alahi AJES, Ecotechnology. Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review. 2024;19:100330.
- Rane N, Paramesha M, Rane J, Kaya OJAI, Society Ii. Emerging trends and future research opportunities in artificial intelligence, machine learning, and deep learning. 2024;5:2-96.
- Konya A, Nematzadeh PJSoTTE. Recent applications of AI to environmental disciplines: A review. 2024;906:167705.
- Ahmed AN, Othman FB, Afan HA, Ibrahim RK, Fai CM, Hossain MS, et al. Machine learning methods for better water quality prediction. 2019;578:124084.
- Essamlali I, Nhaila H, El Khaili MJS. Supervised Machine Learning Approaches for Predicting Key Pollutants and for the Sustainable Enhancement of Urban Air Quality: A Systematic Review. 2024;16(3):976.
- Gupta A, Chadha A, Tewari VJIA. A Natural Language Processing Model on BERT and YAKE technique for keyword extraction on sustainability reports. 2024.
- Gundeti R, Vuppala K, Kasireddy VJEEDoES, AI Uo. The Future of AI and Environmental Sustainability: Challenges and Opportunities. 2024;346-71.
- Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou EJFiph. Environmental and health impacts of air pollution: a review. 2020:8:14
- 11. Alaee S. Air pollution and infertility—a letter to editor. Journal of Environmental Trearment Techniques. 2018;6(4):72-3.
- Talaiekhozani A, Alaee S, Ziaei GR, Mir M, Yazdan M, Ataabadi MS. Knowledge of men and women about infertility risk factors. Iranian Journal of Health, Safety and Environment. 2016;3(4):600-6.
- Abimannan S, El-Alfy E-SM, Hussain S, Chang Y-S, Shukla S, Satheesh D, et al. Towards federated learning and multi-access edge computing for air quality monitoring: literature review and assessment. 2023;15(18):13951.
- Abboud M. Leveraging machine learning for multi-source data enrichment and analytics in air quality monitoring and crowd sensing: Université Paris-Saclay; 2023.
- Masood A, Ahmad KJJoCP. A review on emerging artificial intelligence (AI) techniques for air pollution forecasting: Fundamentals, application and performance. 2021;322:129072.
- Zhang Y, Bocquet M, Mallet V, Seigneur C, Baklanov AJAe. Realtime air quality forecasting, part I: History, techniques, and current status. 2012;60:632-55.
- Kaginalkar A, Kumar S, Gargava P, Niyogi DJUC. Review of urban computing in air quality management as smart city service: An integrated IoT, AI, and cloud technology perspective. 2021;39:100972.
- Fasogbon S, Igboabuchukwu CJR, Reviews SE. Real-time carbon footprint assessment based on energy consumption: A comprehensive review for future research prospects. 2024;192:114225.
- Budach L, Feuerpfeil M, Ihde N, Nathansen A, Noack N, Patzlaff H, et al. The effects of data quality on machine learning performance. 2022
- Alzoubi YI, Mishra AJJoCP. Green artificial intelligence initiatives: Potentials and challenges. 2024:143090.
- Lenton R, Muller M. Integrated water resources management in practice: Better water management for development: Routledge; 2012.
- Kotwal MVS, Pati S, Patil JJEAT, Practice. Review on AI and Iot Based Integrated Smart Water Management And Distribution System. 2024;30(4):594-605.
- Mohamed Almazrouei S, Dweiri F, Aydin R, Alnaqbi AJSAS. A review on the advancements and challenges of artificial intelligence based models for predictive maintenance of water injection pumps in the oil and gas industry. 2023;5(12):391.
- Saxena R, Srivastava V, Bharti D, Singh R, Kumar A, Sharma A. Artificial Intelligence for Water Resource Planning and Management. Innovations in Machine Learning and IoT for Water Management: IGI Global; 2024. p. 51-70.

- Herrera M, Torgo L, Izquierdo J, Pérez-García RJJoh. Predictive models for forecasting hourly urban water demand. 2010;387(1-2):141-50.
- Qadir M, Boers TM, Schubert S, Ghafoor A, Murtaza GJAwm. Agricultural water management in water-starved countries: challenges and opportunities. 2003;62(3):165-85.
- Ghareeb AY, Gharghan SK, Mutlag AH, Nordin RJJoT. Wireless Sensor Network-Based Artificial Intelligent Irrigation System: Challenges and Limitations. 2023;5(3):26-41.
- Nagpal M, Siddique MA, Sharma K, Sharma N, Mittal AJWS, Technology. Optimizing wastewater treatment through artificial intelligence: recent advances and future prospects. 2024;90(3):731-57
- Ani OJA-RJoES. Advanced manufacturing with machine learning: enhancing predictive maintenance, quality control, and process optimization. 2024:280-300.
- Yang L, Driscol J, Sarigai S, Wu Q, Lippitt CD, Morgan MJS. Towards synoptic water monitoring systems: a review of AI methods for automating water body detection and water quality monitoring using remote sensing. 2022;22(6):2416.
- 31. Dada MA, Obaigbena A, Majemite MT, Oliha JS, Biu PWJES, Journal T. Innovative approaches to waste resource management: implications for environmental sustainability and policy. 2024;5(1):115-27.
- Olawade DB, Fapohunda O, Wada OZ, Usman SO, Ige AO, Ajisafe O, et al. Smart waste management: A paradigm shift enabled by artificial intelligence. 2024.
- Farghali M, Osman AI. Revolutionizing waste management: unleashing the power of artificial intelligence and machine learning. Advances in Energy from Waste: Elsevier; 2024. p. 225-79.
- Reza M, Hassan MJIJoSIfC, Societies. AI-Driven solutions for enhanced waste management and recycling in urban areas. 2023;8(2):1-13.
- Fang B, Yu J, Chen Z, Osman AI, Farghali M, Ihara I, et al. Artificial intelligence for waste management in smart cities: a review. 2023;21(4):1959-89.
- Alsabt R, Alkhaldi W, Adenle YA, Alshuwaikhat HMJCWS. Optimizing waste management strategies through artificial intelligence and machine learning-An economic and environmental impact study. 2024;8:100158.
- Pfenninger S, Hawkes A, Keirstead JJR, Reviews SE. Energy systems modeling for twenty-first century energy challenges. 2014;33:74-86.
- 38. Ahmad T, Zhang D, Huang C, Zhang H, Dai N, Song Y, et al. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. 2021;289:125834.
- Khallaf ANJPST. Using Ai to Help Reduce the Effect of Global Warming. 2024;48(1):1927-47.
- Huntingford C, Jeffers ES, Bonsall MB, Christensen HM, Lees T, Yang HJERL. Machine learning and artificial intelligence to aid climate change research and preparedness. 2019;14(12):124007.
- Abualigah L, Zitar RA, Almotairi KH, Hussein AM, Abd Elaziz M, Nikoo MR, et al. Wind, solar, and photovoltaic renewable energy systems with and without energy storage optimization: A survey of advanced machine learning and deep learning techniques. 2022;15(2):578.

- Ukoba K, Olatunji KO, Adeoye E, Jen T-C, Madyira DMJE, Environment. Optimizing renewable energy systems through artificial intelligence: Review and future prospects. 2024:0958305X241256293.
- Farzaneh H, Malehmirchegini L, Bejan A, Afolabi T, Mulumba A, Daka PPJAS. Artificial intelligence evolution in smart buildings for energy efficiency. 2021;11(2):763.
- Rana M, editor Design and Optimization of Energy-Efficient HVAC Systems for Smart Buildings. International Journal for Research Publication and Seminar: 2024.
- Sahith JK, Lal BJGHiCC, Transportation, Storage. Leveraging Machine Learning and Artificial Intelligence for Enhanced Carbon Capture and Storage (CCS).159-96.
- Digitemie WN, Ekemezie IOJES, Journal T. Enhancing carbon capture and storage efficiency in the oil and gas sector: an integrated data science and geological approach. 2024;5(3):924-34.
- Silvestro D, Goria S, Sterner T, Antonelli AJNs. Improving biodiversity protection through artificial intelligence. 2022;5(5):415-24.
- Ayoola VB, Idoko P, Eromonsei SO, Afolabi O, Apampa A, Oyebanji OJWJoAR, et al. The role of big data and AI in enhancing biodiversity conservation and resource management in the USA. 2024;23(02):1851-73.
- Masvingise K, Mujuru NM. AI-Powered Solutions for Sustainable Tourism Practices Through Wildlife Conservation Initiatives. AI Technologies for Personalized and Sustainable Tourism: IGI Global; 2025. p. 113-48.
- Green SE, Rees JP, Stephens PA, Hill RA, Giordano AJJA. Innovations in camera trapping technology and approaches: The integration of citizen science and artificial intelligence. 2020;10(1):132.
- Raihan AJNRC, Research. Artificial intelligence and machine learning applications in forest management and biodiversity conservation. 2023;6(2):3825.
- Shi Y, Jin N, Ma X, Wu B, He Q, Yue C, et al. Attribution of climate and human activities to vegetation change in China using machine learning techniques. 2020;294:108146.
- Liang W, Tadesse GA, Ho D, Fei-Fei L, Zaharia M, Zhang C, et al. Advances, challenges and opportunities in creating data for trustworthy AI. 2022;4(8):669-77.
- Linders DJGIQ. Towards open development: Leveraging open data to improve the planning and coordination of international aid. 2013;30(4):426-34.
- Akinrinola O, Okoye CC, Ofodile OC, Ugochukwu CEJGAR, Reviews. Navigating and reviewing ethical dilemmas in AI development: Strategies for transparency, fairness, and accountability. 2024;18(3):050-8.
- Olatunde TM, Okwandu AC, Akande DO, Sikhakhane ZQJES, Journal T. Reviewing the role of artificial intelligence in energy efficiency optimization. 2024;5(4):1243-56.
- 57. Pedro F, Subosa M, Rivas A, Valverde P. Artificial intelligence in education: Challenges and opportunities for sustainable development USA: The United Nations Educational, Scientific and Cultural Organization (UNESCO); 2019 [cited 2024 25 November 2024]. Available from:

https://repositorio.minedu.gob.pe/handle/20.500.12799/6533.