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Abstract

Microplastics have emerged as an environmental contaminant of concern. They are now frequently detected in drinking water. This
review paper summarizes recent studies on the occurrence, sampling and analytical methods, sources, removal technologies, and
potential human health risks. Short laboratory tests and field studies show that microplastic contamination may occur from raw water
sources, during water treatment, and via distribution systems. The chemical and physical properties of microplastics and their interactions
with co-contaminants are discussed. Finally, we review treatment technologies and future research needs. This review calls for

standardized methods and further risk assessment to ensure safe drinking water.
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1 Introduction

The pervasive presence of microplastics—particles less
than 5 millimeters in size—in various environmental matrices
has become a focal point of scientific investigation due to
potential ecological and human health implications [1].
Drinking water, both bottled and tap, has been identified as a
significant exposure route for these contaminants. Initial
studies revealed the occurrence of synthetic polymer particles
in bottled and tap water, prompting concerns about the safety
and quality of drinking water sources [2, 3]. Subsequent
research has broadened to encompass the detection of
microplastics in water treatment facilities, evaluating the
efficiency of different treatment processes in removing these
particles, and assessing the potential risks associated with their
presence in potable water [4-6]. The detection of microplastics
in treated drinking water has raised questions regarding the
effectiveness of current water treatment technologies and the
possible health risks posed by chronic exposure [7, 8].

The World Health Organization (WHO) has critically
examined the occurrence of microplastics throughout the water
cycle, including both tap and bottled drinking water, and has
evaluated the potential health impacts arising from exposure, as
well as the removal efficacy of microplastics during wastewater
and drinking-water treatment processes [9, 10]. Despite these
efforts, there remains a significant need for high-quality data to
fully understand the implications of microplastic contamination
in drinking water and to inform risk assessments and regulatory
decisions [11, 12]. This review aims to synthesize recent
advancements in our understanding of microplastic
contamination in drinking water, focusing on their sources,
detection methods, treatment efficiencies, and potential health

risks [13-15]. By consolidating current knowledge, we seek to
identify gaps in the existing literature and propose directions
for future research to ensure the safety and quality of drinking
water in the context of microplastic pollution.

2 Occurrence and Sampling Methods

Microplastics have been detected in various drinking water
sources, including tap water, bottled water, and water treatment
effluents, raising concerns about potential human health
impacts [16-18]. The detection and quantification of
microplastics in these water sources are influenced by the
sampling and analysis methods employed.

2.1 Sampling Methods

Common techniques for sampling microplastics in water
include membrane filtration and spectroscopic identification.
Membrane filtration involves filtering water through
membranes with specific pore sizes to capture particles, which
are then analyzed to identify and quantify microplastics [19,
20]. Spectroscopic methods, such as Fourier-transform infrared
(FTIR) spectroscopy and Raman spectroscopy, are used to
determine the polymer type, size, and shape of microplastic
particles in water samples [21, 22]. Standardization of these
methods is essential to ensure consistency and reliability across
studies. However, a lack of standardized protocols has been
identified, leading to variability in results and complicating the
comparison of data across different studies [23, 24].
Researchers emphasize the need for robust quality control
measures to prevent sample contamination and ensure accurate
detection and quantification of microplastics [25, 26].
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2.2 Recent Developments

Recent studies have highlighted the importance of
standardizing sampling and analysis methods to improve data
quality. For instance, a critical review assessed the quality of
fifty studies researching microplastics in drinking water and its
major freshwater sources, emphasizing the need for
standardized methodologies to enhance data reliability [27].
Additionally, the development of standardized practices, such
as ASTM D8333-20, provides guidelines for the collection and
preparation of water samples for microplastic analysis, aiming
to improve consistency across studies [28]. Advancements in
analytical techniques have also improved microplastic
detection. High-resolution imaging and mass spectrometry
have been applied to characterize the size and chemical
composition of microplastics [29, 30]. These tools are essential
to assess the polymer type and surface functional groups that
influence toxicity and fate [31, 32]. However, interlaboratory
comparisons reveal differences in detection limits and recovery
rates, highlighting the need for standardized methodologies to
ensure consistency and reliability across studies [33, 34].

3 Sources and Mechanisms of Contamination

The origin of microplastics in drinking water is complex.
They may enter water systems through urban runoff, industrial
discharge, and the degradation of larger plastic debris [35-37].
Microplastic particles can be further modified by physical,
chemical, and biological processes [38, 39]. In treatment plants,
microplastics may bypass conventional filtration or be released
during distribution [40, 41]. Chemical reactions on
microplastic surfaces (e.g., oxidation) can change their
reactivity and interaction with other pollutants [42, 43]. These
surface modifications may affect the particles’ ability to sorb
heavy metals or organic contaminants [44, 45].

3.1 Sources of Microplastic Contamination

Microplastics enter drinking water sources through various
pathways including urban runoff, industrial discharge, and
degradation of larger plastic debris. Rainfall and stormwater
runoff can transport microplastics from urban areas into rivers
and lakes, which are common sources of drinking water. This
runoff often contains microplastics from degraded plastic
waste, tire wear, and synthetic textiles [46]. Industries that
manufacture or utilize plastic materials may discharge
microplastics into wastewater systems. These particles can pass
through wastewater treatment plants and enter natural water
bodies, subsequently contaminating drinking water sources
[47]. Larger plastic items, such as bottles and packaging,
degrade over time due to environmental factors like UV
radiation and mechanical wear, breaking down into smaller
microplastic particles that can infiltrate water systems [48].

3.2 Mechanisms of Microplastic Modification

Once in the water, microplastics undergo various
modifications like physical processes, chemical processes, and
biological processes. Mechanical actions, such as water
movement and biological activity, can fragment larger plastic
debris into microplastics, altering their size distribution and
surface area [49]. Chemical reactions, including oxidation, can
modify the chemical structure of microplastics, affecting their
reactivity and potential to interact with other substances [50].
Microorganisms can colonize microplastic surfaces, forming
biofilms that may alter the particles' buoyancy and facilitate
their transport through water systems [51].

3.3 Microplastic Behavior in Treatment Plants
In water treatment plants, microplastics may bypass
filtration or release during distribution. Conventional filtration
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methods may not effectively remove all microplastic particles,
allowing some to pass through and enter the treated water
supply [52]. Microplastics can be released into the water during
distribution due to the degradation of plastic pipes and
infrastructure, contributing to contamination [53].

3.4 Impact of Surface Modifications

Chemical reactions on microplastic surfaces, such as
oxidation, can alter reactivity and affect sorption properties.
Surface modifications can change the chemical reactivity of
microplastics, influencing their interactions with other
pollutants and potentially enhancing their toxicity [54].
Modified microplastics may have an increased capacity to
adsorb heavy metals or organic contaminants, serving as
vectors for these substances in water systems [55].
Understanding these sources and mechanisms is crucial for
developing effective strategies to mitigate microplastic
contamination in drinking water.

4 Analytical Techniques

Microplastics have been detected in various drinking water
sources, including tap water, bottled water, and water treatment
effluents, raising concerns about potential human health
impacts [56-58]. The detection and quantification of
microplastics in these water sources are influenced by the
sampling and analysis methods employed.

4.1 Sampling Methods

Common techniques for sampling microplastics in water
include membrane filtration and spectroscopic identification.
Membrane filtration involves filtering water through
membranes with specific pore sizes to capture particles, which
are then analyzed to identify and quantify microplastics [59,
60]. Spectroscopic methods, such as Fourier-transform infrared
(FTIR) spectroscopy and Raman spectroscopy, are used to
determine the polymer type, size, and shape of microplastic
particles in water samples [61, 62]. Standardization of these
methods is essential to ensure consistency and reliability across
studies. However, a lack of standardized protocols has been
identified, leading to variability in results and complicating the
comparison of data across different studies [63, 64].
Researchers emphasize the need for robust quality control
measures to prevent sample contamination and ensure accurate
detection and quantification of microplastics [65, 66].

4.2 Recent Developments

Recent studies have highlighted the importance of
standardizing sampling and analysis methods to improve data
quality. For instance, a critical review assessed the quality of
fifty studies researching microplastics in drinking water and its
major freshwater sources, emphasizing the need for
standardized methodologies to enhance data reliability [67].
Additionally, the development of standardized practices, such
as ASTM D8333-20, provides guidelines for the collection and
preparation of water samples for microplastic analysis, aiming
to improve consistency across studies [68]. Advancements in
analytical techniques have also improved microplastic
detection. High-resolution imaging and mass spectrometry
have been applied to characterize the size and chemical
composition of microplastics [69, 70]. These tools are essential
to assess the polymer type and surface functional groups that
influence toxicity and fate [71, 72]. However, interlaboratory
comparisons reveal differences in detection limits and recovery
rates, highlighting the need for standardized methodologies to
ensure consistency and reliability across studies [73, 74].
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5 Health Implications

The potential health risks associated with microplastics in
drinking water have become a significant concern in recent
years. Laboratory studies have demonstrated that microplastics
can induce oxidative stress and inflammatory responses in
cells, suggesting potential adverse health effects [75, 76].
Although the exact exposure risk is still under debate, human
exposure through ingestion is unavoidable, as microplastics
have been detected in various drinking water sources [77, 78].
Some microplastics carry adsorbed pollutants or additives that
may be harmful when released into biological tissues. These
substances can include heavy metals, persistent organic
pollutants, and plastic additives, which may pose additional
health risks upon ingestion [79, 80]. The interaction between
microplastics and these contaminants can potentially enhance
their bioavailability and toxicity, further complicating the
assessment of health risks. Risk assessment studies continue to
investigate the dose-response relationship and long-term health
impacts of microplastic exposure. However, the current
understanding is limited, and more research is needed to
elucidate the mechanisms of toxicity and the potential
cumulative effects of chronic exposure [81, 82]. As the
presence of microplastics in drinking water is an emerging
issue, ongoing studies aim to provide a clearer picture of the
associated health risks and inform the development of
regulatory guidelines to protect public health.

6 Treatment and Removal Technologies

The presence of microplastics in drinking water has
prompted the development of various treatment technologies
aimed at their removal. Conventional water treatment
processes, such as coagulation, flocculation, and
sedimentation, have been found to remove a fraction of
microplastics. These methods aggregate suspended particles
into larger flocs, which can then settle out of the water column,
capturing some microplastic particles in the process [83, 84].
Advanced treatment methods have demonstrated higher
efficiency in removing microplastics from water sources.
Membrane filtration techniques, including microfiltration,
ultrafiltration, and nanofiltration, utilize semi-permeable
membranes to physically separate microplastics based on size
exclusion principles [85, 86]. Adsorption processes, employing
materials such as activated carbon, have also been effective in
capturing microplastic particles due to their large surface areas
and high affinity for hydrophobic contaminants [87, 88].

Research indicates that combining physical and chemical
treatments may enhance the overall removal efficiency of
microplastics. For instance, integrating coagulation and
flocculation with membrane filtration can improve the capture
of smaller particles that might otherwise pass through
individual treatment processes [89, 90]. Similarly, coupling
advanced oxidation processes with adsorption techniques can
degrade certain microplastics and their associated pollutants,
facilitating their subsequent removal [91, 92]. Despite these
advancements, effectively removing very small particles,
particularly those in the nano-size range, remains a significant
challenge. Nanoplastics can evade conventional treatment
processes due to their diminutive size and unique
physicochemical properties, leading to their persistence in
treated water [93, 94]. Ongoing research is focused on
developing innovative approaches and refining existing
technologies to address the complexities associated with the
detection and removal of nanoplastics in drinking water
treatment systems [95, 96].
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7 Future Research and Recommendations

Future research should prioritize the standardization of
sampling and analysis protocols for microplastics in drinking
water. The current lack of uniform methodologies leads to
variability in data and complicates cross-study comparisons
[97, 98]. Establishing standardized procedures will enhance the
reliability and comparability of research findings.
Comprehensive risk assessments are essential to understand the
potential health implications of microplastic exposure.
Integrating exposure pathways with toxicological data will
provide a more complete picture of the risks associated with
microplastics [99, 100]. This approach will inform the
development of effective mitigation strategies and regulatory
policies. Advancements in treatment technologies are crucial to
effectively capture the full range of microplastic particle sizes
present in drinking water. Improving existing methods and
developing new technologies will enhance removal efficiency,
particularly for smaller particles that are currently challenging
to eliminate [101, 102].

Investigating the chemical reactivity and long-term
behavior of microplastics within water treatment processes will
aid in developing more effective removal strategies.
Understanding how microplastics interact with other
substances and degrade over time will inform the optimization
of treatment methods [103, 104]. International collaboration is
critical to addressing the global challenge of microplastic
contamination in drinking water. Sharing knowledge,
resources, and best practices across borders will facilitate the
development of comprehensive solutions to this pervasive issue
[105, 106].

8 Conclusion

This review highlights that microplastics are a persistent
contaminant in drinking water. Occurrence data, analytical
challenges, and treatment technologies are rapidly evolving
fields. Although several removal methods show promise, there
is an urgent need for standardized protocols and comprehensive
risk assessment [107, 108]. Future research must address the
gaps in knowledge regarding health implications and the fate
of microplastics during water treatment [109, 110]. Ensuring
the safety of drinking water requires coordinated research
efforts and updated regulatory measures.
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