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Abstract 
Microplastics have emerged as an environmental contaminant of concern. They are now frequently detected in drinking water. This 

review paper summarizes recent studies on the occurrence, sampling and analytical methods, sources, removal technologies, and 

potential human health risks. Short laboratory tests and field studies show that microplastic contamination may occur from raw water 

sources, during water treatment, and via distribution systems. The chemical and physical properties of microplastics and their interactions 

with co‐contaminants are discussed. Finally, we review treatment technologies and future research needs. This review calls for 

standardized methods and further risk assessment to ensure safe drinking water. 
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1 Introduction1 
The pervasive presence of microplastics—particles less 

than 5 millimeters in size—in various environmental matrices 

has become a focal point of scientific investigation due to 

potential ecological and human health implications [1]. 

Drinking water, both bottled and tap, has been identified as a 

significant exposure route for these contaminants. Initial 

studies revealed the occurrence of synthetic polymer particles 

in bottled and tap water, prompting concerns about the safety 

and quality of drinking water sources [2, 3]. Subsequent 

research has broadened to encompass the detection of 

microplastics in water treatment facilities, evaluating the 

efficiency of different treatment processes in removing these 

particles, and assessing the potential risks associated with their 

presence in potable water [4–6]. The detection of microplastics 

in treated drinking water has raised questions regarding the 

effectiveness of current water treatment technologies and the 

possible health risks posed by chronic exposure [7, 8]. 

The World Health Organization (WHO) has critically 

examined the occurrence of microplastics throughout the water 

cycle, including both tap and bottled drinking water, and has 

evaluated the potential health impacts arising from exposure, as 

well as the removal efficacy of microplastics during wastewater 

and drinking-water treatment processes [9, 10]. Despite these 

efforts, there remains a significant need for high-quality data to 

fully understand the implications of microplastic contamination 

in drinking water and to inform risk assessments and regulatory 

decisions [11, 12]. This review aims to synthesize recent 

advancements in our understanding of microplastic 

contamination in drinking water, focusing on their sources, 

detection methods, treatment efficiencies, and potential health 
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risks [13–15]. By consolidating current knowledge, we seek to 

identify gaps in the existing literature and propose directions 

for future research to ensure the safety and quality of drinking 

water in the context of microplastic pollution. 

 

2 Occurrence and Sampling Methods 
Microplastics have been detected in various drinking water 

sources, including tap water, bottled water, and water treatment 

effluents, raising concerns about potential human health 

impacts [16–18]. The detection and quantification of 

microplastics in these water sources are influenced by the 

sampling and analysis methods employed. 

 

2.1 Sampling Methods 

Common techniques for sampling microplastics in water 

include membrane filtration and spectroscopic identification. 

Membrane filtration involves filtering water through 

membranes with specific pore sizes to capture particles, which 

are then analyzed to identify and quantify microplastics [19, 

20]. Spectroscopic methods, such as Fourier-transform infrared 

(FTIR) spectroscopy and Raman spectroscopy, are used to 

determine the polymer type, size, and shape of microplastic 

particles in water samples [21, 22]. Standardization of these 

methods is essential to ensure consistency and reliability across 

studies. However, a lack of standardized protocols has been 

identified, leading to variability in results and complicating the 

comparison of data across different studies [23, 24]. 

Researchers emphasize the need for robust quality control 

measures to prevent sample contamination and ensure accurate 

detection and quantification of microplastics [25, 26]. 
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2.2 Recent Developments 

Recent studies have highlighted the importance of 

standardizing sampling and analysis methods to improve data 

quality. For instance, a critical review assessed the quality of 

fifty studies researching microplastics in drinking water and its 

major freshwater sources, emphasizing the need for 

standardized methodologies to enhance data reliability [27]. 

Additionally, the development of standardized practices, such 

as ASTM D8333-20, provides guidelines for the collection and 

preparation of water samples for microplastic analysis, aiming 

to improve consistency across studies [28]. Advancements in 

analytical techniques have also improved microplastic 

detection. High-resolution imaging and mass spectrometry 

have been applied to characterize the size and chemical 

composition of microplastics [29, 30]. These tools are essential 

to assess the polymer type and surface functional groups that 

influence toxicity and fate [31, 32]. However, interlaboratory 

comparisons reveal differences in detection limits and recovery 

rates, highlighting the need for standardized methodologies to 

ensure consistency and reliability across studies [33, 34]. 

 

3 Sources and Mechanisms of Contamination 
The origin of microplastics in drinking water is complex. 

They may enter water systems through urban runoff, industrial 

discharge, and the degradation of larger plastic debris [35–37]. 

Microplastic particles can be further modified by physical, 

chemical, and biological processes [38, 39]. In treatment plants, 

microplastics may bypass conventional filtration or be released 

during distribution [40, 41]. Chemical reactions on 

microplastic surfaces (e.g., oxidation) can change their 

reactivity and interaction with other pollutants [42, 43]. These 

surface modifications may affect the particles’ ability to sorb 

heavy metals or organic contaminants [44, 45]. 

 

3.1 Sources of Microplastic Contamination 

Microplastics enter drinking water sources through various 

pathways including urban runoff, industrial discharge, and 

degradation of larger plastic debris. Rainfall and stormwater 

runoff can transport microplastics from urban areas into rivers 

and lakes, which are common sources of drinking water. This 

runoff often contains microplastics from degraded plastic 

waste, tire wear, and synthetic textiles [46]. Industries that 

manufacture or utilize plastic materials may discharge 

microplastics into wastewater systems. These particles can pass 

through wastewater treatment plants and enter natural water 

bodies, subsequently contaminating drinking water sources 

[47]. Larger plastic items, such as bottles and packaging, 

degrade over time due to environmental factors like UV 

radiation and mechanical wear, breaking down into smaller 

microplastic particles that can infiltrate water systems [48]. 

 

3.2 Mechanisms of Microplastic Modification 

Once in the water, microplastics undergo various 

modifications like physical processes, chemical processes, and 

biological processes. Mechanical actions, such as water 

movement and biological activity, can fragment larger plastic 

debris into microplastics, altering their size distribution and 

surface area [49]. Chemical reactions, including oxidation, can 

modify the chemical structure of microplastics, affecting their 

reactivity and potential to interact with other substances [50]. 

Microorganisms can colonize microplastic surfaces, forming 

biofilms that may alter the particles' buoyancy and facilitate 

their transport through water systems [51]. 

 

3.3 Microplastic Behavior in Treatment Plants 

In water treatment plants, microplastics may bypass 

filtration or release during distribution. Conventional filtration 

methods may not effectively remove all microplastic particles, 

allowing some to pass through and enter the treated water 

supply [52]. Microplastics can be released into the water during 

distribution due to the degradation of plastic pipes and 

infrastructure, contributing to contamination [53]. 

 

3.4 Impact of Surface Modifications 

Chemical reactions on microplastic surfaces, such as 

oxidation, can alter reactivity and affect sorption properties. 

Surface modifications can change the chemical reactivity of 

microplastics, influencing their interactions with other 

pollutants and potentially enhancing their toxicity [54]. 

Modified microplastics may have an increased capacity to 

adsorb heavy metals or organic contaminants, serving as 

vectors for these substances in water systems [55]. 

Understanding these sources and mechanisms is crucial for 

developing effective strategies to mitigate microplastic 

contamination in drinking water. 

 

4 Analytical Techniques 
Microplastics have been detected in various drinking water 

sources, including tap water, bottled water, and water treatment 

effluents, raising concerns about potential human health 

impacts [56–58]. The detection and quantification of 

microplastics in these water sources are influenced by the 

sampling and analysis methods employed. 

 

4.1 Sampling Methods 

Common techniques for sampling microplastics in water 

include membrane filtration and spectroscopic identification. 

Membrane filtration involves filtering water through 

membranes with specific pore sizes to capture particles, which 

are then analyzed to identify and quantify microplastics [59, 

60]. Spectroscopic methods, such as Fourier-transform infrared 

(FTIR) spectroscopy and Raman spectroscopy, are used to 

determine the polymer type, size, and shape of microplastic 

particles in water samples [61, 62]. Standardization of these 

methods is essential to ensure consistency and reliability across 

studies. However, a lack of standardized protocols has been 

identified, leading to variability in results and complicating the 

comparison of data across different studies [63, 64]. 

Researchers emphasize the need for robust quality control 

measures to prevent sample contamination and ensure accurate 

detection and quantification of microplastics [65, 66]. 

 

4.2 Recent Developments 

Recent studies have highlighted the importance of 

standardizing sampling and analysis methods to improve data 

quality. For instance, a critical review assessed the quality of 

fifty studies researching microplastics in drinking water and its 

major freshwater sources, emphasizing the need for 

standardized methodologies to enhance data reliability [67]. 

Additionally, the development of standardized practices, such 

as ASTM D8333-20, provides guidelines for the collection and 

preparation of water samples for microplastic analysis, aiming 

to improve consistency across studies [68]. Advancements in 

analytical techniques have also improved microplastic 

detection. High-resolution imaging and mass spectrometry 

have been applied to characterize the size and chemical 

composition of microplastics [69, 70]. These tools are essential 

to assess the polymer type and surface functional groups that 

influence toxicity and fate [71, 72]. However, interlaboratory 

comparisons reveal differences in detection limits and recovery 

rates, highlighting the need for standardized methodologies to 

ensure consistency and reliability across studies [73, 74]. 
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5 Health Implications 
The potential health risks associated with microplastics in 

drinking water have become a significant concern in recent 

years. Laboratory studies have demonstrated that microplastics 

can induce oxidative stress and inflammatory responses in 

cells, suggesting potential adverse health effects [75, 76]. 

Although the exact exposure risk is still under debate, human 

exposure through ingestion is unavoidable, as microplastics 

have been detected in various drinking water sources [77, 78]. 

Some microplastics carry adsorbed pollutants or additives that 

may be harmful when released into biological tissues. These 

substances can include heavy metals, persistent organic 

pollutants, and plastic additives, which may pose additional 

health risks upon ingestion [79, 80]. The interaction between 

microplastics and these contaminants can potentially enhance 

their bioavailability and toxicity, further complicating the 

assessment of health risks. Risk assessment studies continue to 

investigate the dose-response relationship and long-term health 

impacts of microplastic exposure. However, the current 

understanding is limited, and more research is needed to 

elucidate the mechanisms of toxicity and the potential 

cumulative effects of chronic exposure [81, 82]. As the 

presence of microplastics in drinking water is an emerging 

issue, ongoing studies aim to provide a clearer picture of the 

associated health risks and inform the development of 

regulatory guidelines to protect public health. 

 

6 Treatment and Removal Technologies 
The presence of microplastics in drinking water has 

prompted the development of various treatment technologies 

aimed at their removal. Conventional water treatment 

processes, such as coagulation, flocculation, and 

sedimentation, have been found to remove a fraction of 

microplastics. These methods aggregate suspended particles 

into larger flocs, which can then settle out of the water column, 

capturing some microplastic particles in the process [83, 84]. 

Advanced treatment methods have demonstrated higher 

efficiency in removing microplastics from water sources. 

Membrane filtration techniques, including microfiltration, 

ultrafiltration, and nanofiltration, utilize semi-permeable 

membranes to physically separate microplastics based on size 

exclusion principles [85, 86]. Adsorption processes, employing 

materials such as activated carbon, have also been effective in 

capturing microplastic particles due to their large surface areas 

and high affinity for hydrophobic contaminants [87, 88]. 

Research indicates that combining physical and chemical 

treatments may enhance the overall removal efficiency of 

microplastics. For instance, integrating coagulation and 

flocculation with membrane filtration can improve the capture 

of smaller particles that might otherwise pass through 

individual treatment processes [89, 90]. Similarly, coupling 

advanced oxidation processes with adsorption techniques can 

degrade certain microplastics and their associated pollutants, 

facilitating their subsequent removal [91, 92]. Despite these 

advancements, effectively removing very small particles, 

particularly those in the nano-size range, remains a significant 

challenge. Nanoplastics can evade conventional treatment 

processes due to their diminutive size and unique 

physicochemical properties, leading to their persistence in 

treated water [93, 94]. Ongoing research is focused on 

developing innovative approaches and refining existing 

technologies to address the complexities associated with the 

detection and removal of nanoplastics in drinking water 

treatment systems [95, 96]. 

 

 

7 Future Research and Recommendations 
Future research should prioritize the standardization of 

sampling and analysis protocols for microplastics in drinking 

water. The current lack of uniform methodologies leads to 

variability in data and complicates cross-study comparisons 

[97, 98]. Establishing standardized procedures will enhance the 

reliability and comparability of research findings. 

Comprehensive risk assessments are essential to understand the 

potential health implications of microplastic exposure. 

Integrating exposure pathways with toxicological data will 

provide a more complete picture of the risks associated with 

microplastics [99, 100]. This approach will inform the 

development of effective mitigation strategies and regulatory 

policies. Advancements in treatment technologies are crucial to 

effectively capture the full range of microplastic particle sizes 

present in drinking water. Improving existing methods and 

developing new technologies will enhance removal efficiency, 

particularly for smaller particles that are currently challenging 

to eliminate [101, 102]. 

Investigating the chemical reactivity and long-term 

behavior of microplastics within water treatment processes will 

aid in developing more effective removal strategies. 

Understanding how microplastics interact with other 

substances and degrade over time will inform the optimization 

of treatment methods [103, 104]. International collaboration is 

critical to addressing the global challenge of microplastic 

contamination in drinking water. Sharing knowledge, 

resources, and best practices across borders will facilitate the 

development of comprehensive solutions to this pervasive issue 

[105, 106]. 

 

8 Conclusion 
This review highlights that microplastics are a persistent 

contaminant in drinking water. Occurrence data, analytical 

challenges, and treatment technologies are rapidly evolving 

fields. Although several removal methods show promise, there 

is an urgent need for standardized protocols and comprehensive 

risk assessment [107, 108]. Future research must address the 

gaps in knowledge regarding health implications and the fate 

of microplastics during water treatment [109, 110]. Ensuring 

the safety of drinking water requires coordinated research 

efforts and updated regulatory measures. 
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