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Abstract 
Nanotechnology, which allows the manipulation of molecular dimensions, is used in many aspects of human life, from industrial to 

medical and therapeutic aspects. Features of nanoparticles and their unique capabilities have attracted a lot of attention. Among 

nanotechnology structures, metal nanoparticles have been widely used in many aspects of industry and medicine. The unique properties 

of these nanoparticles make possible to produce and expand them on a large scale, thus making the possibility of exposure to these 

nanoparticles more likely. Nanotechnology and nanoparticles like a double-edged sword despite its many benefits, it also has a number 

of disadvantages. One of the most important of these disadvantages is their toxicity. This toxicity may have adverse effects on the 

environment and humans. One of the most important adverse effects of nanoparticles is adverse effects on the reproductive system. In 

this paper, the adverse effects of some of the most widely used metal nanoparticles on the reproductive system are described. These 

adverse effects can be on: sexual behaviors, sexual organs, sperm count, sperm motility, sperm shape, sperm maturity, ovarian and 

follicle maturation, their fertility rate and also the level of sex hormones in men and women. The adverse effects of these nanoparticles 

and their toxicity on a variety of tissues and organs lead us to use safer nanoparticles. 
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1 Introduction1 
Nanotechnology is defined as the use and manipulation of 

devices, materials, and systems in nanometer scale, 100 

nanometer scale, where the resulting material has new physical 

and chemical properties that are not seen in its Balk 

counterparts. Some scientists  believe that Nanotechnology is 

one of the key technologies in the 21st century. This technology 

has revolutionized the field of medicine،information 

technology and materials. In the past 30 years, nanotechnology 

has become one of the areas where explosive growth has taken 

place in many dimensions (1-5). Many nanostructures 

include:fullerenes, nanoparticles, nanopowders, nanotubes, 

nanowires, nanorods, nano-fibers, quantum dots, dendrimers, 

nanoclusters, nanocrystals, and nanocomposites are produced 

on a large scale and are used in many aspects of human life (6). 

Nanotechnology potential applications in: cancer treatment (7), 

diagnostics (8), imaging (9), cosmetics(10), anti-aging(11), 

pollutiosensing (12, 13), hyperthermia (14), textile (15), 

catalysis (16-19), water and wastewater treatment (20), food 

industry (21), agriculture fertilizers (22), agriculture (23), drug 

delivery (24), biosensors and   biotechnology (25) and many 

more have been proven so far. In many of its applications, 

including pharmacology, this technology has become a 

challenging innovation (26). 

Metal nanoparticles have received a lot of attention due to 

their electronic and chemical properties, and many scientists 

are willing to use them in the development of new generation 
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nanodevices (27). Metal nanoparticles have been widely used 

in targeted drug delivery, cancer treatment, gene therapy and 

DNA analysis, antibacterial agents (28, 29), biosensors, 

enhancing reaction rates, separation science, and magnetic 

resonance imaging (MRI) (30). Some metal nanoparticles, such 

as gold and silver nanoparticles, due to their unique and tunable 

optical properties on account of their surface plasmon 

resonance (SPR), are widely used in molecular-specific 

imaging and sensing, photo-diagnostics, and selective 

photothermal therapy (31). Therefore, although 

nanotechnology has played a very important role in 

development and progress in many different aspects: from cell 

phones to medicines, but also the negative dimensions of this 

modern technology and its toxic effects must be considered.  

Due to the widespread use of these nanostructures in various 

aspects of human life, human exposure to these nanostructures 

and nanotechnology is inevitable. It is the duty of these 

nanomaterials to enter and affect the various organs and tissues 

of the human body in various ways. These nanoparticles may 

have toxic effects that deformation and inhibition of cell 

growth.And thus cause various diseases in humans and animal 

(6, 32). There is a wealth of evidence to support the toxicity of 

some nanostructures, for example:Titanium oxide 

nanoparticles, which are widely used in cosmetics and skin care 

products, reactive oxygen, they create species and cause 

damage to DNA carbon nanotubes may cause lipide 

eroxidation, oxidative stress, mitochondrialdys function, and 
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changes in cell morphology upon in vitro incubation with 

keratinocytes and bronchial epithelial cells and thus be 

dangerous. Silver nanoparticles have been shown to be dose-

dependent toxicity and may cause oxidative stress in alveolar 

macrophages. Quantum dots and fullerenes cause 

inflammatory reactions and may also cause reactive oxygen 

species (33-40). 

A large number of nanostructures by passing through 

biological barriers, they can have destructive and toxic effects 

on many human organs such as have the brain, liver, and 

kidney. Another important system that is affected by the toxic 

effects of nanoparticles is reproductive systems. There are 

many evidences that some nanoparticles can pass from the 

reproductive barrier systems such as the blood-testis barrier, 

placental barrier, and epithelial barrier, and then accumulate in 

the testis, epididymis, ovary, and uterus and eventually cause 

damage to these organs. The accumulation of nanoparticles in 

the reproductive system can have adverse effects on sperm and 

oocytes. These adverse effects include: adverse effects on 

quantity, quality, motility and sperm morphology, adverse 

effects on oocytes, detrimental effects on the development of 

primary and secondary follicles, negative effects on the number 

of mature oocytes and their reduction, detrimental effects on 

levels of secreted hormones and changes in sexual behavior. 

Although the exact mechanism of toxicity of nanoparticles on 

reproductive organs has not yet been completely elucidated, it 

is possible that some mechanisms, such as oxidative stress, 

apoptosis, inflammation, and genotoxicity play a role in the 

toxicity of nanoparticles and their destructive effects on the 

reproductive system (41-55) . 

 

2 The reproductive system 
1.2 The female reproductive system 

The female reproductive system has internal and external 

parts. External sections include labia majora,  labia minora, 

Bartholin’s glands, and clitoris. The internal parts also include 

the vagina, uterus, ovaries and fallopian tubes. The most 

important functions of the female reproductive system are: 

oocytes production, which can eventually act as an egg cell and 

play a role in the reproductive process, participation in the 

fertilization process, participation in the implantation process, 

participation in the menstrual cycle And It also produces some 

female sex hormones to maintain the reproductive cycle (56-

58). 

 

2.2 The male reproductive system 
The male reproductive system also has internal and external 

parts. External genitalia include: the penis, scrotum, and 

testicles and the internal genitalia include: epididymis,vas 

deferens, ejaculatoryducts, urethra, seminal vesicles, and 

prostateGland, bulbourethral glands. The most important 

functions of the male reproductive system are: sperm 

production, sperm maintenance and protection. In this device, 

some sex hormones are also produced and secreted to maintain 

the reproductive system (59-62). 

 

3 Factors affecting on the toxicity of 

nanoparticles 
Size, shape, chemical composition, surface charge,  

solubility, the type of nanoparticle entry path into the body, the 

exposure time of nanoparticles.  surface chemistry (PEGylation, 

ligand conjugation), bio distribution, penetration rate, 

bioavailability  and Individual characteristics (age, sex) (63, 

64).   

 

4 The main ways in which nanoparticles enter 

the reproductive system 
Dermal exposure, pulmonary exposure, and 

gastrointestinal exposure are the major pathways for 

nanoparticles to enter the reproductive system.  

Dermal: Some nanoparticles used in cosmetics, such as nano-

titanium dioxide, can enter the body through skin absorption. 

Various evidence suggests that the skin absorption rate of 

nanoparticles is very low. In this way, nanoparticles can be 

absorbed through the skin without causing significant toxicity 

(65-70). 

Gastrointestinal: This route is one of the main entry and 

absorption pathways for nanoparticles. Most of the 

nanoparticles that used in food and the drugs that are taken 

orally enter the body through this pathway. The nanoparticles 

mainly enter the bloodstream and secondary organs after 

entering the gastrointestinal tract. The rate of absorption of 

different nanoparticles varies. Different nanoparticles have a 

longer duration in the large intestine and a shorter duration in 

the stomach. After entering and absorbing, nanoparticles are 

distributed through this pathway to various organs, including 

the liver, spleen, and mesenteric lymph nodes (71-74) . 

Lung: Some nanostructures, such as cerium oxide, enter the 

body mainly through inhalation and remain in the lungs. Some 

other nanoparticles enter through inhalation and then enter the 

central nervous system through olfactory neurons (75, 76). 

There are many evidences that nanoparticles are absorbed into 

the bloodstream after entering each of these pathways and 

eventually enter organs such as the liver, spleen, kidney, brain, 

ovaries and testes (76). 

 

5 Some of the most widely used metal 

nanoparticles  and their effect on the 

reproductive system 
5.1 Titanium dioxide nanoparticles (TiO2 NPs) 

TiO2 NPs are widely used in medical, diagnostic and 

cosmetic fields. The increasing use of these nanoparticles is 

highly toxic to humans. Some evidence suggests that  TiO2 NPs 

lead to damage to follicles. These nanoparticles reduce 

follicular survival and prevent the development and maturation 

of oocyte. TiO2 NPs also have adverse effects on sperm. These 

nanoparticles have an adverse effect on sperm motility. These 

nanoparticles reduce  the number of normal sperm but increases 

the number of abnormal sperm. Some other evidence suggests 

that these nanoparticles induce apoptosis in germ cells in the 

testicular mouse (77-81). The table 1 shows some of the effects 

of titanium dioxide nanoparticles on the reproductive system. 

 

 

 

 

 

 

 

Table 1: Shows some of the entry routes and adverse effects of TiO2 NP 

The entrance route Function Reference 
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Orally Body weight changes, relative changes in testicular weight and genitals. (82)  

- 

Some studies have shown that TiO2 NPs can be found in cytoplasm and nuclei of ovarian cells 

accumulate. Nanoparticles accumulated in the cell can induce apoptosis. In addition, the 

mitochondria and nuclei of ovarian cells were disrupted. Mitochondrial swelling and rupture, 

nuclear chromatin condensation,and irregularity of the nuclear membrane was also observed. 

(83-87) 

Intragastric 
Spermatogenesis suppressionThrough alterationsof testicular enzymes and oxidative stress in 

the testes. 
(88) 

IP 

Changes in estrogen and progesterone levels, changes in ovarian tissue, loss of Graafian 

follicles, destruction of follicles wall, reducing the thickness of Granulosa and Thec layers and 

decreased corpus luteum. 

 

(89) 

Intragastric 

The direct effect of TiO2 NPs on ovarian function and consequently ovarian damage, as well 

as these nano particles can cause an imbalance of mineral element distribution and sex 

hormones, decrease fertility or the pregnancy rate and oxidative stress in mice. 

(5) 

Orally 

This study suggests that oral administration of TiO2 NP may alter ovarian tissue. These 

changes include:Destruction of follicles, reduction of their number, disruption of follicle 

growth, possibility of ovarian cyst formation, decrease in pregnancy rate, decrease in number 

of births, decrease in oocyte number, decrease in fertilization rate, decrease in fetal growth 

before implantation and also increase in malondyaldehyde hormones and estrogen. 

(90) 

Intragastric 

This study showed that nanosized titanium dioxide reduces body weight, relative ovarian 

weight, reduced fertility, changes in sex hormone levels, atretic follicle increases, 

inflammation, and necrosis.  

(91) 

Gavage 

This study shows that TiO2 NPs can lead to premature ovarian failure (POF), decreased levels 

of estradiol hormones, progesterone, increased levels of luteinizing hormone, follicle-

stimulating hormone, anti-Müllerian hormone, thyroid-stimulating hormone, free 

tetraiodothyronine, anti-nuclear antibody and anti-thyroid peroxidase antibody levels in 

serum. Thus, TiO2 nanoparticles can through alterations in hormones and autoimmunity 

markers lead to POF. 

(92) 

- 

According to studies, the findings indicate adverse effects of Titanium dioxide nanoparticles 

(TiO2 ‐ NPs) on sperm. These nanoparticles are able to cross the blood-testis barrier, 

inflammation, cytotoxicity, and gene expression changes. In addition, these nanoparticles may 

cause damage to sperm DNA. 

(93) 

 

This study shows that TiO2-NP has been shown to be dose-dependent toxicity. These 

nanoparticles at higher doses can induce autophagy and necrosis in Sertoli cells, and 

consequently negatively affected spermatogenic cells and testicular morphology becomes. 

(94) 

 

2.5 Nano-zinc oxide (ZnO) 

Zinc oxide nanoparticles have a wide variety of 

applications in various fields. Numerous studies and evidence 

have shown that zinc oxide nanoparticles have adverse effects 

on the production system. These nanoparticles have the ability 

to cross barriers that protect the reproductive system. These 

nanoparticles have adverse effects on the female reproductive 

system and fertility (95-97). Table 2 shows some of the adverse 

effects of zinc oxide nanoparticles on the reproductive system . 

 

3.5 Silver nanoparticles (AgNPs) 

Silver nanoparticles (AgNPs) have been used extensively 

in areas such as antibiotics, textile , wound dressings, medical 

devices, antibacterial, antifungal, anti-cancer, and antigenic 

applications. But along with its diverse development and 

applications, there are potential risks to human health, 

especially for reproductive system. (98, 99). Table 3 shows 

some of these disadvantages and problems.  

 

4.5 Gold nanoparticles 
Gold nanoparticles have the wide variety of applications. 

Some researchers divide the biological applications of these 

nanoparticles into four main classes: labeling, delivering, 

heating, and sensing (100). These nanoparticles  can be used in:   

gene delivery (101), PPTT (102), catalyzed (103), chemical 

sensing, biological imaging, drug delivery, and cancer 

treatment (104). Although the unique properties of gold 

nanoparticles provide a wide range of biological applications, 

there is evidence that these nanoparticles are toxic at high 

concentrations (105). Some of these adverse effects are listed 

in Table 4 . 

 

5.5 Iron oxide nanoparticles 

Iron oxide NPs are used in many fields including: as 

contrast agents in imaging Magnetic resonance imaging (MRI), 

drug delivery, etc. One of the other major applications of these 

nanoparticles is environmental remediation applications. Thus 

these nanoparticles are in a greater risk of human exposures 

(106-115). Table 5 shows some of the risks of this nanoparticle 

associated with the reproductive system. 

 

6.5 Nickel nanoparticles (Ni NPs) 

Nickel nanoparticles (Ni NPs) are used in a variety of fields 

due to their unique properties. Some of these features include: 

catalysts, high-density magnetic. These nanoparticles can be 

used to treat cancer (116), catalytic (117), biosensor (118), 

nuclear waste, biochemical products, and cells (119, 120). 

These nanoparticles may cause problems for humans. Some 

studies and evidence have shown that these nanoparticles may 

cause apoptosis, oxidative stress, and DNA damage.  

 

Table 2: Shows some of the entry routes and adverse effects of zinc oxide nanoparticles on the reproductive system 

The entrance route Function Reference 
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Intravenously 

ZnO has the ability to penetrate fetal ovaries. These nanoparticles may be the amount DNA  

increase damage and apoptosis in fetal oocyte. Toxic effects of these nanoparticles to their 

ion ‐ shedding Their ability and low solubility are attributed. Their side depends on the dose. 

Influence and accumulation of zinc oxide nanoparticles can reduce the number of oocytes, 

impaired primordial follicle assembly and folliculo  genesis dynamics in the ovaries. 

 (121-123) 

Intraperitoneally 

(IP) 

This study showed that oxide nanoparticles have a dose-dependent toxicity. At higher doses, 

these nanoparticles increase in the corpusluteum, follicular cysts, inflammatory cells 

infiltration and fibrosis. Histopathological changes in ovary, epithelial destruction, 

hyperplasia of endometrial glands and changes in estrogen and progesterone levels (decrease 

in the level of these hormones in high doses and increase in low doses). 

(124) 

Gastrointestinally 
Studies have shown that the use of zinc oxide nanoparticles before and during pregnancy and 

lactation may increase the risk of health to pregnant women and their fetuses. 
(125) 

Orally 

This study shows that ZNP can induce adverse and toxic dose-dependent effects in testicular 

germ cells. These nanoparticles may be present in Sertolicell also has adverse effects and 

The multinucleated giant cell formation and sloughing of immature germ cells from the 

seminiferoustubules are evidence of this. In addition, these nanoparticles may have the 

ability to induce apoptosis or autophagy in testicular germ cells. 

(126) 

Orally 
In this study, it was shown that zinc oxide nanoparticles through regulation of specific 

signaling pathways may have adverse effects on female reproductive systems. 
(127) 

Intraperitoneal (IP) 

ZnO nanoparticles have destructive effects on the cells of the male reproductive system. 

These effects are as reduction and loss of cells in seminiferous tubules in testicular tissue. In 

fact, these nanoparticles are able to degenerate and decrease cell types in the seminiferous 

tubules (such as spermatogonia, primary spermatocyte, spermatid and sperm cells), outer part 

of the tubules (such as leydig, fibroblast cells and blood vesicles), seminiferous epithelium 

and tubule are diameters. 

(128) 

Intravenous 
This study showed that these nanoparticles have dose-dependent toxicity. These 

nanoparticles may cause fetal death and decrease them weigh too. 
(129) 

 

Table 3: Shows some of the entry routes and adverse effects of AgNPs on the reproductive system 

The entrance route Function Reference 

Intravenous 

AgNPs may  interfere with the process of meiosis progression and expression of imprinted 

genes. Also these nanoparticles reduce the methylation of  Zac1 gene and increase the 

methylation of  Igf2r. In fact, AgNPs can stop the process of dividing meiosis. 

 

(130-139) 

Intravenous 

This study shows that AgNPs are transmitted through Ag + formation in cellsTM4cells and 

granulosa cells, and germ cells, induce damage. These nanoparticles are also  by releasing 

cytochrome c in to the cytosol induces apoptotic induction. 

 

(135, 140-

142) 

Orally 

Evidence suggests that silver nanoparticles have adverse effects on testicular tissue. These 

adverse effects include: Histopathology revealed abnormal arrangement, deformity, atrophy, 

degeneration, and necrosis of epithelial cells of somniferous tubules. These nanoparticles also 

reduce the concentration of testosterone. Silver nanoparticles also have a negative effect on the 

number of sperm, leading to a decrease in them. 

 

(140, 143-

149) 

Subcutaneous 
This study suggests that silver nanoparticles may have adverse effects on spermatogenesis. 

Silver nanoparticles also affect sperm quality. 
(150) 

Intravenously 

This study showed that AgNPs lead to DNA damage in germ cells. These nanoparticles also 

lead to changes in the seminiferous tubule morphometry. The study also showed that by 

reducing the size of these nanoparticles, their toxicity increased and also showed that the dose-

dependent toxicity nanoparticles. 

 

(151) 

 

The study found that AgNPs had adverse effects. In pregnant mothers who were injected with 

these nanoparticles, delayed physical development and impaired cognitive behavior in 

offspring occurred. The nanoparticles were also found in placenta, breast milk. These 

nanoparticles can also accumulate in testes and visceral yolk sac. 

(152) 

Intravenous 

This study shows that AgNP has adverse effects on oocyte maturation. This nanoparticle can 

also have negative effects on arly embryonic development. This nanoparticle is likely to trigger 

cell apoptosis through the production of ROS and p53‐, p21‐, and caspase ‐ 3 ‐ dependent 

regulatory mechanisms. 

(153) 

 

Table 4: Shows the Routes of entry of gold nanoparticles and some of their negative effects on the reproductive system 

The entrance route Function Reference 
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- 
This study suggests that gold nanoparticles may have toxic and adverse effects on ovarian 

granulosa cells. 
(154) 

- This study shows that gold nanoparticles can have size-dependent toxicity. (155) 

Intraperitoneal 

Gold nanoparticles can cause changes in the levels of LH, FSH and testosterone hormones. In 

fact, increase the amount of these hormones. It is predicted that these nanoparticles may also 

increase infertility by increasing the levels of these hormones. 
(156) 

Intravenously 

This study shows that gold nanoparticles with smaller sizes are more widely distributed in body 

tissues and may be distributed in some organs, including the liver, spleen, kidney, testis, thymus, 

heart, lung, and brain. 
(157) 

 

Table 5: shows some of the adverse effects of iron oxide nanoparticles on the reproductive system 

The entrance route Function Reference 

Intraperitoneal 

In this study, the effect of surface charge of iron oxide nanoparticles on the passage of placenta 

and effect on the fetus was studied. Research has shown that both are positively and negatively 

charged iron oxide nanoparticles have the ability to cross the placenta and accumulate in the 

fetal body, although nanoparticles with more positive charge accumulate and thus show more 

toxicity. 

(158) 

Intraperitoneally 

In this study, the effect of iron oxide nanoparticles coated with dimercaptosuccinic acid (DMSA) 

in pregnant mice was investigated. This study showed that high doses of this nanoparticle 

reduced spermatogonia, spermatocytes, spermatids and mature sperm. In fact, high doses of this 

nanoparticle impair fetal growth. 

(158) 

Intraperitoneally 

The results of this study showed that conventional iron oxide particle induced more 

accumulation and more oxidative stress than nanoparticles.This can negatively effect on the 

fertility of female rats. 
(159) 

Intratracheally 
This study showed that female mice may show more sensitive response to FeNPs exposure than 

male mice. 
(160) 

Intraperitoneally 

This study showed that NP Fe2O3 has the ability to cross the testicular barrier and enter it. The 

accumulation of these nanoparticles in the testicles causes oxidative stress and apoptosis. These 

nanoparticles also caused histopathological lesions such as vacuolization, detachment, and 

sloughing of germ cells. In addition, testosterone levels increased with exposure to these 

nanoparticles. 

(161) 

Orally 

In this study, the effects of Fe2O3-NPs on seminal vesicle and prostate gland were studied in 

mice. These nanoparticles caused food consumption, water intake, and organo-somatic index in 

mice. These nanoparticles can cause oxidative stress. Therefore, these nanoparticles cause 

pathological changes in the seminal vesicle and prostate gland. 

(162) 

 

 

 

Table 6: Shows some of the entrance route  of nickel nanoparticles and their negative effects on the reproductive system 

The entrance route Function Reference 

Gavage  
This study shows that nickel nanoparticles (Ni NPs) have adverse effects on the 

reproductive system. These adverse effects are: Ovarian lymphocytosis, vascular dilatation 
(163) 
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and congestion, inflammatory cell infiltration. Overall weight loss, increased epididymis-

to-body weight ratio, altered sperm motility, decreased FSH levels, and testosterone (T). 

Gavage 

This study showed that NiNPs caused significant toxicity in rat tests. These nanoparticles 

create their adverse effects by inducing oxidative stress and apoptosis. Also, this study 

showed the dose-dependent toxicity of these nanoparticles. 

(164) 

- 

In this study, the effects of nanoparticles (Ni NPs) on gamete quality of marine organisms 

and on the consequences on fertility potential were investigated. The results showed that 

these nanoparticles induced oxidative stress, lipid peroxidation and DNA fragmentation, 

and altered MMP and sperm morphology. These nanoparticles also affect the ability to 

induce and create anomalies in the offspring. 

(165) 

Gavage 

In this study, the effects of Ni NPs on ovarian cells were investigated. The results showed 

swelling mitochondrion swelling, disappearance of mitochondrial cristae, and enlargement 

of the endoplasmic reticulum.The nanoparticles also increased some of the enzymes and 

proteins associated with apoptosis, including mRNAs associated with caspase 3, caspase 

8 and and caspase 9, and the proteins Fas, Cyt c, Bax, and Bid in the ovaries. 

(166) 

Gavage 

In this study, the effects of nickel nanoparticles on spermatogenesis were investigated. The 

results showed various cell apoptosis and disordered arrangement of cells arranged in the 

seminiferous tubules. The results also showed that these nanoparticles also increased 

sperm motility. 

(167) 

 

In this study, the effect of Ni NPs on Sertoli-germ co-cultured cells (Sertoli-germ cells) 

was investigated. The results showed that these nanoparticles can induce apoptosis on 

Sertoli-germ cells. 

(168) 

 

  
Figure 1: shows some of the adverse effects that metal nanoparticles (titanium oxide, gold, iron, silver, zinc oxide, nickel) have on the reproductive 

system 

  

 

Another issue with this nanoparticle is the damage can 

cause to the reproductive system (167); That Table 6 lists some 

of these adverse effects. Figure 1 also shows some of the 

adverse effects of these nanoparticles on the reproductive 

system. 

 

6 Conclusion 
With the advent of nanotechnology in various fields of 

medicine and industry, a great change has taken place. A 

development that led to unique applications that were unlikely 

to occur before. Nanotechnology, like many other sciences, has 

a number of disadvantages, despite having many advantages. 
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One of these disadvantages is the adverse effects that some 

nanoparticles have on the reproductive system. These adverse 

effects have so far appeared as adverse effects on sex hormone 

levels, Adverse effects on the sperm maturation cycle as well 

as its quality, negative effects on the process of oocyte 

maturation and inhibition, changes in sexual behavior, adverse 

effects on the fetus, and so on. All of the above evidence 

highlights the need for more efficient and safe use of nano  

particles.  In such a way that they have less risk. In general, 

these adverse effects indicate the need to use nanomaterials 

with greater safety and less hazards. 
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