.Journul of Infertility and Reproductive

g y J Infertil Reprod Biol, 2020, Volume 8, Issue 3, Pages: 22-32

Adverse Effects of some of the Most Widely used
Metal Nanoparticles on the Reproductive System

Shahla Abdollahiit, Faezeh Jadidi?, Marjan Safari', Amir Mohammad Akbari Javar?, Nasrin
Beheshtkhoo**, Mohammad Amin Jadidi Kouhbanani**

!Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shahroud University of Medical Sciences,
Shahroud, Iran
2Student Resesrch committee, Zarand school of nursing, Kerman university of medical sciences, kerman,Iran
3Department of Mathematics, faculty of Mathematics, Farhangian University, Kerman, Iran
“Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

Received: 22/03/2020 Accepted: 15/07/2020 Published: 20/09/2020
Abstract

Nanotechnology, which allows the manipulation of molecular dimensions, is used in many aspects of human life, from industrial to
medical and therapeutic aspects. Features of nanoparticles and their unique capabilities have attracted a lot of attention. Among
nanotechnology structures, metal nanoparticles have been widely used in many aspects of industry and medicine. The unique properties
of these nanoparticles make possible to produce and expand them on a large scale, thus making the possibility of exposure to these
nanoparticles more likely. Nanotechnology and nanoparticles like a double-edged sword despite its many benefits, it also has a number
of disadvantages. One of the most important of these disadvantages is their toxicity. This toxicity may have adverse effects on the
environment and humans. One of the most important adverse effects of nanoparticles is adverse effects on the reproductive system. In
this paper, the adverse effects of some of the most widely used metal nanoparticles on the reproductive system are described. These
adverse effects can be on: sexual behaviors, sexual organs, sperm count, sperm motility, sperm shape, sperm maturity, ovarian and
follicle maturation, their fertility rate and also the level of sex hormones in men and women. The adverse effects of these nanoparticles
and their toxicity on a variety of tissues and organs lead us to use safer nanoparticles.
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1 Introduction

Nanotechnology is defined as the use and manipulation of
devices, materials, and systems in nanometer scale, 100
nanometer scale, where the resulting material has new physical
and chemical properties that are not seen in its Balk
counterparts. Some scientists believe that Nanotechnology is
one of the key technologies in the 21st century. This technology
has revolutionized the field of medicine<information
technology and materials. In the past 30 years, nanotechnology
has become one of the areas where explosive growth has taken
place in many dimensions (1-5). Many nanostructures
include:fullerenes, nanoparticles, nanopowders, nanotubes,
nanowires, nanorods, nano-fibers, quantum dots, dendrimers,
nanoclusters, nanocrystals, and nanocomposites are produced
on a large scale and are used in many aspects of human life (6).
Nanotechnology potential applications in: cancer treatment (7),
diagnostics (8), imaging (9), cosmetics(10), anti-aging(11),
pollutiosensing (12, 13), hyperthermia (14), textile (15),
catalysis (16-19), water and wastewater treatment (20), food
industry (21), agriculture fertilizers (22), agriculture (23), drug
delivery (24), biosensors and biotechnology (25) and many
more have been proven so far. In many of its applications,
including pharmacology, this technology has become a
challenging innovation (26).

Metal nanoparticles have received a lot of attention due to
their electronic and chemical properties, and many scientists
are willing to use them in the development of new generation

nanodevices (27). Metal nanoparticles have been widely used
in targeted drug delivery, cancer treatment, gene therapy and
DNA analysis, antibacterial agents (28, 29), biosensors,
enhancing reaction rates, separation science, and magnetic
resonance imaging (MRI) (30). Some metal nanoparticles, such
as gold and silver nanoparticles, due to their unique and tunable
optical properties on account of their surface plasmon
resonance (SPR), are widely used in molecular-specific
imaging and sensing, photo-diagnostics, and selective
photothermal therapy  (31). Therefore, although
nanotechnology has played a very important role in
development and progress in many different aspects: from cell
phones to medicines, but also the negative dimensions of this
modern technology and its toxic effects must be considered.
Due to the widespread use of these nanostructures in various
aspects of human life, human exposure to these nanostructures
and nanotechnology is inevitable. It is the duty of these
nanomaterials to enter and affect the various organs and tissues
of the human body in various ways. These nanoparticles may
have toxic effects that deformation and inhibition of cell
growth.And thus cause various diseases in humans and animal
(6, 32). There is a wealth of evidence to support the toxicity of
some  nanostructures, for  example:Titanium  oxide
nanoparticles, which are widely used in cosmetics and skin care
products, reactive oxygen, they create species and cause
damage to DNA carbon nanotubes may cause lipide
eroxidation, oxidative stress, mitochondrialdys function, and
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changes in cell morphology upon in vitro incubation with
keratinocytes and bronchial epithelial cells and thus be
dangerous. Silver nanoparticles have been shown to be dose-
dependent toxicity and may cause oxidative stress in alveolar
macrophages. Quantum dots and fullerenes cause
inflammatory reactions and may also cause reactive oxygen
species (33-40).

A large number of nanostructures by passing through
biological barriers, they can have destructive and toxic effects
on many human organs such as have the brain, liver, and
kidney. Another important system that is affected by the toxic
effects of nanoparticles is reproductive systems. There are
many evidences that some nanoparticles can pass from the
reproductive barrier systems such as the blood-testis barrier,
placental barrier, and epithelial barrier, and then accumulate in
the testis, epididymis, ovary, and uterus and eventually cause
damage to these organs. The accumulation of nanoparticles in
the reproductive system can have adverse effects on sperm and
oocytes. These adverse effects include: adverse effects on
quantity, quality, motility and sperm morphology, adverse
effects on oocytes, detrimental effects on the development of
primary and secondary follicles, negative effects on the number
of mature oocytes and their reduction, detrimental effects on
levels of secreted hormones and changes in sexual behavior.
Although the exact mechanism of toxicity of nanoparticles on
reproductive organs has not yet been completely elucidated, it
is possible that some mechanisms, such as oxidative stress,
apoptosis, inflammation, and genotoxicity play a role in the
toxicity of nanoparticles and their destructive effects on the
reproductive system (41-55) .

2 The reproductive system
1.2 The female reproductive system

The female reproductive system has internal and external
parts. External sections include labia majora, labia minora,
Bartholin’s glands, and clitoris. The internal parts also include
the vagina, uterus, ovaries and fallopian tubes. The most
important functions of the female reproductive system are:
oocytes production, which can eventually act as an egg cell and
play a role in the reproductive process, participation in the
fertilization process, participation in the implantation process,
participation in the menstrual cycle And It also produces some
female sex hormones to maintain the reproductive cycle (56-
58).

2.2 The male reproductive system

The male reproductive system also has internal and external
parts. External genitalia include: the penis, scrotum, and
testicles and the internal genitalia include: epididymis,vas
deferens, ejaculatoryducts, urethra, seminal vesicles, and
prostateGland, bulbourethral glands. The most important
functions of the male reproductive system are: sperm
production, sperm maintenance and protection. In this device,
some sex hormones are also produced and secreted to maintain
the reproductive system (59-62).

3 Factors affecting on the toxicity of

nanoparticles

Size, shape, chemical composition, surface charge,
solubility, the type of nanoparticle entry path into the body, the
exposure time of nanoparticles. surface chemistry (PEGylation,
ligand conjugation), bio distribution, penetration rate,
bioavailability and Individual characteristics (age, sex) (63,
64).

4 The main ways in which nanoparticles enter

the reproductive system

Dermal  exposure,  pulmonary  exposure,  and
gastrointestinal exposure are the major pathways for
nanoparticles to enter the reproductive system.
Dermal: Some nanoparticles used in cosmetics, such as nano-
titanium dioxide, can enter the body through skin absorption.
Various evidence suggests that the skin absorption rate of
nanoparticles is very low. In this way, nanoparticles can be
absorbed through the skin without causing significant toxicity
(65-70).
Gastrointestinal: This route is one of the main entry and
absorption pathways for nanoparticles. Most of the
nanoparticles that used in food and the drugs that are taken
orally enter the body through this pathway. The nanoparticles
mainly enter the bloodstream and secondary organs after
entering the gastrointestinal tract. The rate of absorption of
different nanoparticles varies. Different nanoparticles have a
longer duration in the large intestine and a shorter duration in
the stomach. After entering and absorbing, nanoparticles are
distributed through this pathway to various organs, including
the liver, spleen, and mesenteric lymph nodes (71-74) .
Lung: Some nanostructures, such as cerium oxide, enter the
body mainly through inhalation and remain in the lungs. Some
other nanoparticles enter through inhalation and then enter the
central nervous system through olfactory neurons (75, 76).
There are many evidences that nanoparticles are absorbed into
the bloodstream after entering each of these pathways and
eventually enter organs such as the liver, spleen, kidney, brain,
ovaries and testes (76).

5 Some of the most widely used metal
nanoparticles and their effect on the

reproductive system
5.1 Titanium dioxide nanoparticles (TiO2 NPs)

TiO2 NPs are widely used in medical, diagnostic and
cosmetic fields. The increasing use of these nanoparticles is
highly toxic to humans. Some evidence suggests that TiO2 NPs
lead to damage to follicles. These nanoparticles reduce
follicular survival and prevent the development and maturation
of oocyte. TiO2 NPs also have adverse effects on sperm. These
nanoparticles have an adverse effect on sperm motility. These
nanoparticles reduce the number of normal sperm but increases
the number of abnormal sperm. Some other evidence suggests
that these nanoparticles induce apoptosis in germ cells in the
testicular mouse (77-81). The table 1 shows some of the effects
of titanium dioxide nanoparticles on the reproductive system.

Table 1: Shows some of the entry routes and adverse effects of TiO2 NP

The entrance route Function
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Orally

Intragastric

Intragastric

Orally

Intragastric

Gavage

2.5 Nano-zinc oxide (ZnO)

Body weight changes, relative changes in testicular weight and genitals.

Some studies have shown that TiO2 NPs can be found in cytoplasm and nuclei of ovarian cells
accumulate. Nanoparticles accumulated in the cell can induce apoptosis. In addition, the
mitochondria and nuclei of ovarian cells were disrupted. Mitochondrial swelling and rupture,
nuclear chromatin condensation,and irregularity of the nuclear membrane was also observed.

Spermatogenesis suppressionThrough alterationsof testicular enzymes and oxidative stress in
the testes.

Changes in estrogen and progesterone levels, changes in ovarian tissue, loss of Graafian
follicles, destruction of follicles wall, reducing the thickness of Granulosa and Thec layers and
decreased corpus luteum.

The direct effect of TiO2 NPs on ovarian function and consequently ovarian damage, as well
as these nano particles can cause an imbalance of mineral element distribution and sex
hormones, decrease fertility or the pregnancy rate and oxidative stress in mice.

This study suggests that oral administration of TiO2 NP may alter ovarian tissue. These
changes include:Destruction of follicles, reduction of their number, disruption of follicle
growth, possibility of ovarian cyst formation, decrease in pregnancy rate, decrease in number
of births, decrease in oocyte number, decrease in fertilization rate, decrease in fetal growth
before implantation and also increase in malondyaldehyde hormones and estrogen.

This study showed that nanosized titanium dioxide reduces body weight, relative ovarian
weight, reduced fertility, changes in sex hormone levels, atretic follicle increases,
inflammation, and necrosis.

This study shows that TiO2 NPs can lead to premature ovarian failure (POF), decreased levels
of estradiol hormones, progesterone, increased levels of luteinizing hormone, follicle-
stimulating hormone, anti-Mdllerian hormone, thyroid-stimulating hormone, free
tetraiodothyronine, anti-nuclear antibody and anti-thyroid peroxidase antibody levels in
serum. Thus, TiO2 nanoparticles can through alterations in hormones and autoimmunity
markers lead to POF.

According to studies, the findings indicate adverse effects of Titanium dioxide nanoparticles
(TiO2 - NPs) on sperm. These nanoparticles are able to cross the blood-testis barrier,
inflammation, cytotoxicity, and gene expression changes. In addition, these nanoparticles may
cause damage to sperm DNA.

This study shows that TiO2-NP has been shown to be dose-dependent toxicity. These
nanoparticles at higher doses can induce autophagy and necrosis in Sertoli cells, and
consequently negatively affected spermatogenic cells and testicular morphology becomes.

sensing, biological

(82)

(83-87)

(88)

(89)

®)

(90)

(91

(92)

(93)

(94)

imaging, drug delivery, and cancer

Zinc oxide nanoparticles have a wide variety of
applications in various fields. Numerous studies and evidence
have shown that zinc oxide nanoparticles have adverse effects
on the production system. These nanoparticles have the ability
to cross barriers that protect the reproductive system. These
nanoparticles have adverse effects on the female reproductive
system and fertility (95-97). Table 2 shows some of the adverse
effects of zinc oxide nanoparticles on the reproductive system.

3.5 Silver nanoparticles (AgNPs)

Silver nanoparticles (AgNPs) have been used extensively
in areas such as antibiotics, textile , wound dressings, medical
devices, antibacterial, antifungal, anti-cancer, and antigenic
applications. But along with its diverse development and
applications, there are potential risks to human health,
especially for reproductive system. (98, 99). Table 3 shows
some of these disadvantages and problems.

4.5 Gold nanoparticles

Gold nanoparticles have the wide variety of applications.
Some researchers divide the biological applications of these
nanoparticles into four main classes: labeling, delivering,
heating, and sensing (100). These nanoparticles can be used in:
gene delivery (101), PPTT (102), catalyzed (103), chemical

treatment (104). Although the unique properties of gold
nanoparticles provide a wide range of biological applications,
there is evidence that these nanoparticles are toxic at high
concentrations (105). Some of these adverse effects are listed
in Table 4.

5.5 Iron oxide nanoparticles

Iron oxide NPs are used in many fields including: as
contrast agents in imaging Magnetic resonance imaging (MRI),
drug delivery, etc. One of the other major applications of these
nanoparticles is environmental remediation applications. Thus
these nanoparticles are in a greater risk of human exposures
(106-115). Table 5 shows some of the risks of this nanoparticle
associated with the reproductive system.

6.5 Nickel nanoparticles (Ni NPs)

Nickel nanoparticles (Ni NPs) are used in a variety of fields
due to their unique properties. Some of these features include:
catalysts, high-density magnetic. These nanoparticles can be
used to treat cancer (116), catalytic (117), biosensor (118),
nuclear waste, biochemical products, and cells (119, 120).
These nanoparticles may cause problems for humans. Some
studies and evidence have shown that these nanoparticles may
cause apoptosis, oxidative stress, and DNA damage.

Table 2: Shows some of the entry routes and adverse effects of zinc oxide nanoparticles on the reproductive system

The entrance route

Function
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ZnO has the ability to penetrate fetal ovaries. These nanoparticles may be the amount DNA

increase damage and apoptosis in fetal oocyte. Toxic effects of these nanoparticles to their
Intravenously ion - shedding Their ability and low solubility are attributed. Their side depends on the dose. (121-123)
Influence and accumulation of zinc oxide nanoparticles can reduce the number of oocytes,
impaired primordial follicle assembly and folliculo genesis dynamics in the ovaries.
This study showed that oxide nanoparticles have a dose-dependent toxicity. At higher doses,
these nanoparticles increase in the corpusluteum, follicular cysts, inflammatory cells
infiltration and fibrosis. Histopathological changes in ovary, epithelial destruction, (124)
hyperplasia of endometrial glands and changes in estrogen and progesterone levels (decrease
in the level of these hormones in high doses and increase in low doses).
Studies have shown that the use of zinc oxide nanoparticles before and during pregnancy and
lactation may increase the risk of health to pregnant women and their fetuses.
This study shows that ZNP can induce adverse and toxic dose-dependent effects in testicular
germ cells. These nanoparticles may be present in Sertolicell also has adverse effects and
Orally The multinucleated giant cell formation and sloughing of immature germ cells from the (126)
seminiferoustubules are evidence of this. In addition, these nanoparticles may have the
ability to induce apoptosis or autophagy in testicular germ cells.
In this study, it was shown that zinc oxide nanoparticles through regulation of specific
signaling pathways may have adverse effects on female reproductive systems.
ZnO nanoparticles have destructive effects on the cells of the male reproductive system.
These effects are as reduction and loss of cells in seminiferous tubules in testicular tissue. In
fact, these nanoparticles are able to degenerate and decrease cell types in the seminiferous
tubules (such as spermatogonia, primary spermatocyte, spermatid and sperm cells), outer part
of the tubules (such as leydig, fibroblast cells and blood vesicles), seminiferous epithelium
and tubule are diameters.
This study showed that these nanoparticles have dose-dependent toxicity. These
nanoparticles may cause fetal death and decrease them weigh too.

Table 3: Shows some of the entry routes and adverse effects of AgNPs on the reproductive system
The entrance route Function Reference

AgNPs may interfere with the process of meiosis progression and expression of imprinted
genes. Also these nanoparticles reduce the methylation of Zaci gene and increase the

Intraperitoneally

(1P)

Gastrointestinally (125)

Orally (127)

Intraperitoneal (1P)

(128)

Intravenous (129)

Intravenous methylation of Igfar. In fact, AgNPs can stop the process of dividing meiosis. (e A
This study shows that AgNPs are transmitted through Ag * formation in cellsTMacells and
granulosa cells, and germ cells, induce damage. These nanoparticles are also by releasing (135, 140-
Intravenous - . L .
cytochrome c in to the cytosol induces apoptotic induction. 142)
Evidence suggests that silver nanoparticles have adverse effects on testicular tissue. These
adverse effects include: Histopathology revealed abnormal arrangement, deformity, atrophy,
Orall degeneration, and necrosis of epithelial cells of somniferous tubules. These nanoparticles also (140, 143-
y reduce the concentration of testosterone. Silver nanoparticles also have a negative effect on the = 149)
number of sperm, leading to a decrease in them.
Subcutaneous This study suggests that silver nanoparticles may have adverse effects on spermatogenesis. (150)

Silver nanoparticles also affect sperm quality.

This study showed that AgNPs lead to DNA damage in germ cells. These nanoparticles also

lead to changes in the seminiferous tubule morphometry. The study also showed that by
Intravenously reducing the size of these nanoparticles, their toxicity increased and also showed that the dose- = (151)

dependent toxicity nanoparticles.

The study found that AgNPs had adverse effects. In pregnant mothers who were injected with
these nanoparticles, delayed physical development and impaired cognitive behavior in

offspring occurred. The nanoparticles were also found in placenta, breast milk. These (152)

nanoparticles can also accumulate in testes and visceral yolk sac.

This study shows that AgNP has adverse effects on oocyte maturation. This nanoparticle can
Intravenous also have negative effects on arly embryonic development. This nanoparticle is likely to trigger (153)

cell apoptosis through the production of ROS and p53-, p21-, and caspase - 3 - dependent
regulatory mechanisms.

Table 4: Shows the Routes of entry of gold nanoparticles and some of their negative effects on the reproductive system

The entrance route Function Reference
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) This study suggests that gold nanoparticles may have toxic and adverse effects on ovarian (154)
granulosa cells.

- This study shows that gold nanoparticles can have size-dependent toxicity. (155)

Gold nanoparticles can cause changes in the levels of LH, FSH and testosterone hormones. In
Intraperitoneal fact, increase the amount of these hormones. It is predicted that these nanoparticles may also = (156)
increase infertility by increasing the levels of these hormones.

This study shows that gold nanoparticles with smaller sizes are more widely distributed in body
Intravenously tissues and may be distributed in some organs, including the liver, spleen, kidney, testis, thymus, | (157)
heart, lung, and brain.

Table 5: shows some of the adverse effects of iron oxide nanoparticles on the reproductive system

The entrance route Function Reference

In this study, the effect of surface charge of iron oxide nanoparticles on the passage of placenta

and effect on the fetus was studied. Research has shown that both are positively and negatively
Intraperitoneal charged iron oxide nanoparticles have the ability to cross the placenta and accumulate in the = (158)

fetal body, although nanoparticles with more positive charge accumulate and thus show more

toxicity.

In this study, the effect of iron oxide nanoparticles coated with dimercaptosuccinic acid (DMSA)
in pregnant mice was investigated. This study showed that high doses of this nanoparticle
reduced spermatogonia, spermatocytes, spermatids and mature sperm. In fact, high doses of this
nanoparticle impair fetal growth.

Intraperitoneally (158)

The results of this study showed that conventional iron oxide particle induced more
Intraperitoneally accumulation and more oxidative stress than nanoparticles.This can negatively effect on the (159)
fertility of female rats.

This study showed that female mice may show more sensitive response to FeNPs exposure than

Intratracheally male mice

(160)

This study showed that NP Fe203 has the ability to cross the testicular barrier and enter it. The
accumulation of these nanoparticles in the testicles causes oxidative stress and apoptosis. These

Intraperitoneally nanoparticles also caused histopathological lesions such as vacuolization, detachment, and = (161)
sloughing of germ cells. In addition, testosterone levels increased with exposure to these
nanoparticles.

In this study, the effects of Fe203-NPs on seminal vesicle and prostate gland were studied in
mice. These nanoparticles caused food consumption, water intake, and organo-somatic index in
mice. These nanoparticles can cause oxidative stress. Therefore, these nanoparticles cause
pathological changes in the seminal vesicle and prostate gland.

Orally (162)

Table 6: Shows some of the entrance route of nickel nanoparticles and their negative effects on the reproductive system

The entrance route Function Reference

This study shows that nickel nanoparticles (Ni NPs) have adverse effects on the

CrrEye reproductive system. These adverse effects are: Ovarian lymphocytosis, vascular dilatation

(163)
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and congestion, inflammatory cell infiltration. Overall weight loss, increased epididymis-
to-body weight ratio, altered sperm motility, decreased FSH levels, and testosterone (T).
This study showed that NiNPs caused significant toxicity in rat tests. These nanoparticles
Gavage create their adverse effects by inducing oxidative stress and apoptosis. Also, this study = (164)

showed the dose-dependent toxicity of these nanoparticles.

In this study, the effects of nanoparticles (Ni NPs) on gamete quality of marine organisms

and on the consequences on fertility potential were investigated. The results showed that
- these nanoparticles induced oxidative stress, lipid peroxidation and DNA fragmentation, = (165)

and altered MMP and sperm morphology. These nanoparticles also affect the ability to

induce and create anomalies in the offspring.

In this study, the effects of Ni NPs on ovarian cells were investigated. The results showed

swelling mitochondrion swelling, disappearance of mitochondrial cristae, and enlargement
Gavage of the endoplasmic reticulum.The nanoparticles also increased some of the enzymes and | (166)
proteins associated with apoptosis, including mRNAs associated with caspase 3, caspase
8 and and caspase 9, and the proteins Fas, Cyt ¢, Bax, and Bid in the ovaries.
In this study, the effects of nickel nanoparticles on spermatogenesis were investigated. The
results showed various cell apoptosis and disordered arrangement of cells arranged in the
seminiferous tubules. The results also showed that these nanoparticles also increased
sperm motility.
In this study, the effect of Ni NPs on Sertoli-germ co-cultured cells (Sertoli-germ cells)
was investigated. The results showed that these nanoparticles can induce apoptosis on | (168)
Sertoli-germ cells.

Gavage (167)

AgNP AUNP TiO2NP

Changes in female hormone levels
>
female

- Destruction of follicle @ @
S ‘ and ; K1) ®
_g , 7\ Decrease in oocyte number 'fég’) ® ©®
: (@)
=
©
I~
8. .

DNA damage _ g g

Male — 3 N e

Decreased sperm motility

I > >

ZnO iron oxide NP Ni NP K‘/ B B

degenerate and decrease cell types in the seminiferous tubules (such
as spermatogonia, primary spermatocyte, spermatid and sperm
cells)

Figure 1: shows some of the adverse effects that metal nanoparticles (titanium oxide, gold, iron, silver, zinc oxide, nickel) have on the reproductive
system

6 Conclusion

With the advent of nanotechnology in various fields of
medicine and industry, a great change has taken place. A
development that led to unique applications that were unlikely
to occur before. Nanotechnology, like many other sciences, has
a number of disadvantages, despite having many advantages.

Another issue with this nanoparticle is the damage can
cause to the reproductive system (167); That Table 6 lists some
of these adverse effects. Figure 1 also shows some of the
adverse effects of these nanoparticles on the reproductive
system.
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One of these disadvantages is the adverse effects that some
nanoparticles have on the reproductive system. These adverse
effects have so far appeared as adverse effects on sex hormone
levels, Adverse effects on the sperm maturation cycle as well
as its quality, negative effects on the process of oocyte
maturation and inhibition, changes in sexual behavior, adverse
effects on the fetus, and so on. All of the above evidence
highlights the need for more efficient and safe use of nano
particles. In such a way that they have less risk. In general,
these adverse effects indicate the need to use nanomaterials
with greater safety and less hazards.
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