

The Effect of Age, Sperm Freezing, and Washing on Intrauterine Insemination Outcome: a Retrospective Analysis

Lionel Wildy Moungala^{1,2,3}

¹ Reproductive Scientist, Androcryos Andrology Laboratory, Johannesburg, South Africa
² Embryology (Cryotech) Instructor, Reprolife, Japan
³ Lecturer, School Of Health, Libreville, Gabon

Received: 10/12/2022 Accepted: 19/02/2023 Published: 20/03/2023

Abstract

Age and semen quality can significantly affect the outcome of intrauterine insemination treatment. However, few studies have evaluated the effect of age, semen cryopreservation, and washing on intrauterine insemination outcomes. The current study evaluates the effects of woman age and semen donor age, semen processing, and freezing on intrauterine insemination outcomes. Significant negative correlations were found between semen donors' age and sperm concentration, progressive motility, and normal morphology. Donors aged less than or equal to 30 years had better semen quality compared to those aged above 30 years. Significant higher semen viscosity, semen volume, total sperm count, progressive motility, total progressively motile count, normal morphology, and total normal sperm count were observed in fresh semen samples of donors who had positive pregnancies after intrauterine insemination. Furthermore, significantly higher post-wash progressive motility was obtained in donors who had positive pregnancies after intrauterine insemination. The results of this study provide insight into the eligibility in terms of age and semen characteristics of patients seeking intrauterine insemination.

Keywords: Aging, Artificial Insemination, Cryopreservation, Semen Quality

Introduction

The global prevalence of infertility was reported to be approximately 15% in 2015 (1). Different assisted reproductive techniques are used to treat infertility. Intrauterine insemination (IUI) is the ART consisting of placing washed semen samples in the upper uterine cavity (2). IUI is considered the first line (3, 4) and cost-effective (5, 6) treatment. IUI is frequently used for mild male factor infertility, anovulation, endometriosis, and unexplained infertility (7, 8).

Several factors can influence IUI outcome, which includes maternal age (9-11), paternal age (12, 13), and semen parameters (14-17). Maternal age significantly influenced clinical pregnancy rate and live birth rates after intrauterine insemination after controlled ovarian stimulation (18). Advanced female age was previously indicated to harm the pregnancy rate and associated with an increased miscarriage rate (19). Although the effect of paternal age on IUI outcome is not yet established in the literature (20), an increased number of spermatozoa with necrospermia and DNA fragmentation due to advanced paternal age were found to negatively impact intrauterine insemination outcomes (19).

Many IUI cycles are using frozen semen samples. Cryopreservation is a core art technique that can provide long-term preservation of spermatozoa, enabling the conservation of male fertility (21). The process of freezing spermatozoa has been used routinely for over 40 years to preserve fertility ability in males undergoing cancer therapy (22), medical surgery that may reduce the testicular function or induce sexual dysfunction, or in

male facing autoimmune diseases and those seeking vasectomy surgery (23-27). Furthermore, the freezing of spermatozoa is used in clinical settings by sperm banks for infertility treatment and the establishment of sperm donors (28). However, freezing of spermatozoa was found to reduce sperm viability (29), normal morphology (30) total motile sperm count (31), and induce sperm DNA damage (32). There is a notable lack of studies investigating the association between human semen freezing and IUI outcome. The current study evaluates the effects of age, semen processing, and freezing on IUI outcomes.

Materials and methods

We retrospectively analyzed 40 IUI cycles using frozen donor semen samples between June 2017 and November 2022 at Androcryos andrology laboratory, south Africa. Demographic data such as woman and donor age together with fresh, post-freeze, and post-wash semen parameters were analyzed. Semen samples were collected and evaluated according to the methodology described by the world health organization (who, 2010). Semen parameters evaluated in the current study consisted of viscosity (mm), volume (ml), sperm concentration (x10⁶/ml), total sperm count (x10⁶), progressive motility (%), total progressive motile count (%), normal morphology (%), total normal sperm count (%).

The total progressive motile count was defined as the product

*Corresponding Author: Lionel Wildy Moungala, Medical Scientist, Androcryos Andrology Laboratory, Johannesburg, South Africa. Email: U12232310@Tuks.Co.Za

of total sperm count and progressive motility (sperm concentration $(106 \, | \text{ml})/100 \, \text{x}$ progressive motility (%) x volume (ml)), while the total normal sperm count was the product of total sperm count and the percentage of normal morphology (sperm concentration $(106 \, | \text{ml})/100 \, \text{x}$ normal morphology (%) x volume (ml)).

Permission to use the data was granted by the androcryos andrology laboratory director.IUI was performed under gonadotropin stimulation. Fresh semen samples collected from donors were initially evaluated, then frozen using spermfreezetm (fertipro, (fertipro, Brussels, Belgium). Semen samples were processed using a density gradient (puresperm®, nidacon international ab, Sweden) and sperm wash medium (sperm wash, nidacon, international ab, Sweden).

Statistical analysis was performed using the medcalc® statistical software version 19.5 (medcalc software ltd, Ostend, Belgium; https:www.medcalc.org; 2020). Descriptive statistics for variables were presented as sample size, minimum, maximum, mean, median, and standard deviation. The chi-square test was used to determine the distribution of all the data sets. Correlations were determined by Pearson correlation and expressed as $\rm r^2$. For all statistical tests, a p-value of <0.05 was considered statistically significant. All data collection and statistical analyses were done by the author (lw).

Results

Summary Statistics

Summary statistics of the age and evaluated fresh semen parameters are summarized in Table 1. The average woman age and donor age in this study were 33 ± 4.07 and 29 ± 3.05 respectively. The average semen and volume were 3.79 ± 1.28 and $27.55~\pm 23.53$ respectively. Sperm concentration was $103.2~\pm 30.77$ while total sperm count was 389.19 ± 165.82 . The average donor sperm progressive motility and total progressive motile count were $68.50~\pm 11.83$ and $277.60~\pm 151.97$. Normal morphology was $7.20~\pm 2.90$ while the total normal sperm count was $30.68~\pm 22.23$.

Correlation between donor age and semen parameters

Table 2 summarizes the correlation coefficient and significance between donor age and semen parameters. Significant negative correlations were found between donor age and sperm concentration, progressive motility, and normal

morphology (p<0.05). Significant positive correlation between semen viscosity and progressive motility, normal morphology, and between semen volume and normal morphology. Furthermore, there was a significant positive correlation between sperm concentration and normal morphology as well as between progressive motility and normal morphology.

Comparison of pre-freeze, post-freeze, and post-wash semen parameters between donors aged less than or equal to 30 years and more than 30 years

The comparison of semen parameters between donor age groups (\leq 30 years and >30 years) is highlighted in Table 3. Donors aged less than or equal to 30 years had significantly higher total sperm count, progressive motility, normal morphology, and total normal sperm count (p<0.05).

Impact of age and fresh semen parameters on pregnancy outcomes

A comparison between the age of women who had positive pregnancies and those who had negative pregnancies is highlighted in Table 4. Furthermore, the table summarizes the comparison of donor age and semen characteristics between the positive pregnancy group (group i) and the negative pregnancy group (group ii). There were no significant differences in woman and donor age between the group of women who had positive pregnancies and those who had negative pregnancies. However, semen viscosity, semen volume, total sperm count, progressive motility, tpmc, normal morphology, and tnsc of the donor in the positive pregnancy group were significantly higher than those in the negative pregnancy group. Sperm concentration was not significantly different between the 2 groups of donors.

Comparison Of Post-Freeze And Post-Wash Semen Parameters

Table 5 summarizes the comparison of post-freeze and post-wash sperm concentration and progressive motility between donors' sperm with positive pregnancy (group i) and donor sperm with negative pregnancy (group ii) outcomes. There were no significant differences in post-freeze concentration, post-freeze progressive motility, and post-wash concentration between group 1 and group 2. However, group I had a significantly higher post-wash progressive motility (p=0.0060) in comparison to group ii.

Table 1. Summary statistics of	f the age and fresh sem	en parameters obtained f	rom participants
--------------------------------	-------------------------	--------------------------	------------------

	N	Minimum	Maximum	Mean	Median	SD	Distribution
Women Age	40	25	41	33.77	33.00	4.07	Normal
Donor Age	40	26	35	29.57	28.50	3.05	Normal
Viscosity	40	2.00	100	27.55	22.50	23.53	Normal
Volume	40	2.20	6.50	3.79	3.30	1.28	Normal
Concentration	40	60	178	103.2	100	30.77	Normal
Total Sperm Count	40	142.60	747.60	389.19	337.25	165.82	Normal
Progressive Motility	40	50.00	95.00	68.50	65.00	11.83	Normal
Total Progr. Motile Count	40	71.30	662.40	277.60	221.71	151.97	Normal
Normal Morphology	40	2.00	12.00	7.20	6.50	2.90	Normal
Total Normal Sperm Count	40	5.58	80.90	30.68	22.42	22.23	Normal

Table 2. The correlation coefficient between donor age and fresh semen parameters using the Pearson correlation coefficient

		Viscosity	Semen	Sperm	Progressive Motility	Normal
		•	Volume	Concentration	·	Morphology
Donor Age	\mathbb{R}^2	-0,262	-0,206	-0,358	-0,391	-0,395
_	P	0,1028	0,2021	0,0233	0,0127	0,0116
	\mathbf{N}	40	40	40	40	40
Viscosity	\mathbb{R}^2		0,183	0,070	0,330	0,452
	P		0,2588	0,6667	0,0376	0,0034
	N		40	40	40	40
Semen Volume	\mathbb{R}^2			-0,064	0,222	0,452
	P			0,6968	0,1690	0,0034
	\mathbf{N}			40	40	40
Sperm	\mathbb{R}^2				0,529	0,311
Concentration	P				0,0005	0,0512
	\mathbf{N}				40	40
Progressive	\mathbb{R}^2					0,375
Motility	P					0,0171
·	N					40

Table 3. Comparison of pre-freeze, post-freeze, and post wash semen parameters between donor aged less than or equal to 30 years and more than 30 years

	Donor Age ≤30		Donor Age >30		P-Value
	N	Mean (±SD)	N	Mean (±SD)	
Semen Viscosity	26	31.88 (±25.26)	14	21.42 (±19.15)	0.187
Semen Volume	26	4.04 (±1.40)	14	3.40 (±1.00)	0.143
Sperm Concentration	26	109.76 (±28.88)	14	93.85 (±32.23)	0.122
Total Sperm Count	26	435.59 (±160)	14	329.12 (±151.70)	0.033
Progressive Motility	26	71.800 (±11.71)	14	62.85 (±10.50)	0.023
TPMSC	26	320.02 (±143.8)	14	211.91 (±146.36)	0.031
Normal Morphology	26	8.04 (±2.96)	14	5.92 (±2.26)	0.026
Total Normal Sperm Count	26	36.97 (±21.99)	14	21.04 (±19.38)	0.029

Table 4. Comparison of age and fresh semen parameters between positive and negative pregnancy outcomes groups

		Positive Pregnancy (Group I)	Negative Pregnancy (Group II)	P-Value
Woman Age	Mean (±SD)	32.57 (±3.33)	34.85 (±4.44)	0.076
<u> </u>	N	19	21	
Donor Age	Mean (±SD)	28.73 (±2.82)	$30.33 (\pm 3.11)$	0.099
	N	19	21	
Semen Viscosity	Mean (±SD)	40.00 (±22.60)	16.28 (±18.34)	0.0008
	N	19	21	
Semen Volume	Mean (±SD)	4.44 (±1.15)	$3.20 (\pm 1.12)$	0.0014
	N	19	21	
Concentration	Mean (±SD)	110.26 (±31.09)	96.80 (±29.76)	0.170
	N	19	21	
TSC	Mean (±SD)	479.32 (±150.50)	307.64 (±136.13)	0.0005
	N	19	21	
Prog. Motility	Mean (±SD)	72.89 (±13.97)	64.52 (±7.89)	0.023
•	N	19	21	
TPMC	Mean (±SD)	358.68 (±155.05)	204.24 (±107.24)	0.0007
	N	19	21	
Norm. Morphology	Mean (±SD)	9.78 (±1.81)	4.85 (±1.15)	< 0.0001
- 3	N	19	21	
TNSC	Mean (±SD)	48.30 (±19.90)	14.74 (±6.58)	< 0.0001
	N	19	21	

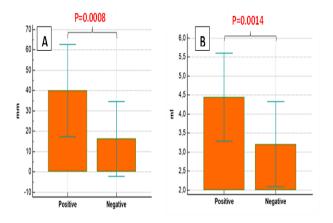


Figure 1. Illustration of the pre freeze semen viscosity (a) and semen volume (b), between positive pregnancy and negative pregnancy.

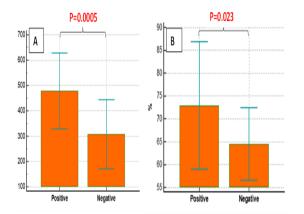


Figure 2. Illustration of the pre freeze total sperm count (a) and progressive motility (b), between positive pregnancy and negative pregnancy.

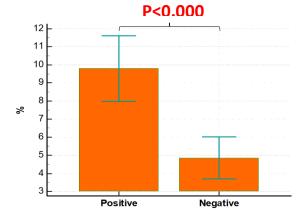


Figure 3. Illustration of the pre freeze normal morphology between positive pregnancy and negative pregnancy.

Table 5. Comparison of post-freeze and post-wash sperm concentration and progressive motility between positive and negative pregnancy outcomes groups

		Positive Pregnancy (Group I)	Negative Pregnancy (Group II)	P- Value
Post-Freeze	Mean	59.73	50.57	0.191
Concentration	SD	28.41	13.10	
	N	19	21	
Post-Freeze	Mean	51,0526	46,61	0.095
Prog Motility	SD	9.88	6.46	
	N	19	21	
Post-Wash	Mean	26.88	23.19	0.450
Concentration	SD	14.15	11.21	
	N	9	21	
Post Wash	Mean	92.22	77.38	0.0060
Prog. Motility	SD	2.63	14.71	
	N	9	21	

Discussion

Several factors were found to affect IUI outcomes (8). Advancing paternal age was associated with a decrease in semen quality (33-35), consequently negatively impacting pregnancy rates after IUI (8). An age-related decrease in sperm concentration and progressive motility was highlighted in a retrospective crosssectional study investigating 71,623 infertile men in China (36). Furthermore, in a meta-analysis of 90 studies and 93,839 males, age-related declines are found for semen volume, progressive motility, total motility, normal morphology, and unfragmented cells, independent of confounding variables (37). This is reflected in the results of this retrospective study. Sperm concentration, progressive motility, and normal morphology had a significant negative correlation with donor age. Additionally, the current study found a significant positive correlation between sperm morphology and semen viscosity, semen volume, and progressive motility.

While some research has highlighted a decrease in semen quality associated with advancing paternal age, other studies have established an age threshold for semen parameters (35-37). A threshold of>45 years for sperm concentration and motility decrease was identified in a retrospective analysis involving 889 men (38). More interestingly, some reports highlighted age thresholds > 35 years (35,36,39). For instance, Pino et al., 2020 found that males aged <31 years were more likely to experience a decrease in sperm motility (39). The current study has demonstrated that donors aged less than or equal to 30 years have significantly higher total sperm count, progressive motility, tpmc, normal morphology, and total normal sperm count than those aged above 30.

Semen parameters were indicated to have a predictive value for pregnancy outcomes in intrauterine insemination cycles (40, 41). Sperm progressive motility (42-44), total sperm count (42), normal morphology (40, 44, 45), and total motile sperm count (40;41) were found to be useful prognostic factors of IUI. This is consistent with the results of the current study which showed significantly higher progressive motility, total progressively motile count, total sperm count, normal morphology, and total normal sperm count in the positive pregnancy group compared to the negative pregnancy group. Furthermore, the current study also found significant differences in terms of semen volume and semen viscosity, which has not been previously reported to our knowledge. Surprisingly, the current study did not find any

difference in sperm concentration between the evaluated groups while previous studies have highlighted sperm concentration as an important predictive factor for IUI (42). However, it is important to note that the average sperm concentration for both investigated groups in the current study was above lower reference limits as stipulated in the WHO, 2010.

Sperm cryopreservation has been widely used in assisted reproductive technology (art) (49). Freezing of spermatozoa has been the best option to preserve male fertility before oncologic treatments (50, 51), for male patients facing severe oligospermia or ejaculatory disorder (49). A previous study has found that intrauterine insemination using frozen sperm resulted in an increase in the pregnancy rate in donor insemination cycles under gonadotropin stimulation (49). The current study did not find any differences between the two investigated groups in terms of postfreeze concentration, post-freeze progressive motility, and postwash concentration. Although the current study didn't find any significant differences in post-wash sperm concentration between the two groups, both groups had post-wash sperm concentrations above the threshold value of 1 million for successful IUI which was previously observed in many studies (50-52). Similarly, to the fresh semen samples, significant differences were observed in post-wash progressive motility.

The predictive value of paternal age and semen parameters for pregnancy after the first IUI cycle is still controversial in the literature, with some studies showing low or no predictive power of some semen parameters (44;53). Our study showed significant negative correlations between donor age and semen parameters with better semen quality observed in donors aged less than or equal to 30 years. Furthermore, the semen quality of donors who had positive pregnancies following IUI was higher than donors who had negative pregnancies. Additionally, the current study found differences in post-wash progressive motility between the investigated groups. However, these conclusions should be interpreted with caution, a better multi-center prognostic study design including standardized analysis, consistent sperm processing methodology, and controlled fertility workup is needed to confirm the current results.

Funding

None

Ethical Issue

The author is aware of and complies with, best practices in publication ethics specifically about authorship (avoidance of guest authorship), dual submission, manipulation of figures, competing interests, and compliance with policies on research ethics. The author adheres to publication requirements that submitted work is original and has not been published elsewhere in any language. Also, all procedures performed in studies involving human participants were under the ethical standards of the institutional and/or national research committee and with the 1964 helsinki declaration and its later amendments or comparable ethical standards.

Competing Interests

The author declares that no conflict of interest would prejudice the impartiality of this scientific work.

Acknowledgments

The Author Would Like To Express His Gratitude To Mr. Petrus Loubser, General Manager At Androcryos Andrology Laboratory For Giving Permission To Access Anonymously The Retrospective Data Of Patients.

References

- Inhorn MC, Patrizio P. Infertility Around The Globe: New Thinking On Gender, Reproductive Technologies, And Global Movements In The 21st Century. Human Reproduction Update. 2015; 21: 411–426.
- Allahbadia GN. Intrauterine Insemination: Fundamentals Revisited. Journal Of Obstetrics And Gynaecology. 2017; 67: 385–392.
- Zafar M, Jameel T, Abdullah KN. Impact Of Intrauterine Insemination As First Line Treatment Of Subfertility. Journal Of Pakistan Medical Association. 2007; 57(3): 133-136.
- Ombelet. Evidence-Based Recommendations For IUI In Daily Practice. Middle East Fertility Society Journal. 2013; 18(2): 74-77.
- Bahadur G, Homburg R. Growing Body Of Evidence Supports Intrauterine Insemination As First Line Treatment And Rejects Unfounded Concerns About Its Efficacy, Risks And Cost Effectiveness. JBRA Assisted Reproduction. 2019; 23(1): 62-67.
- Almaslami F, Aljunid SM. Cost-Effectiveness Of Assisted Reproductive Technologies In Saudi Arabia: Comparing In Vitro Fertilization With Intrauterine Insemination. SAGE Open Medicine. 2020; 8: 2050312120931988.
- Van Voorhis B. Effect Of The Total Motile Sperm Count On The Efficacy And Cost-Effectiveness Of Intrauterine Insemination And In Vitro Fertilization. Fertility And Sterility. 2001; 75: 661–668.
- Starosta A, Gordon CE, Hornstein MD. Predictive Factors For Intrauterine Insemination Outcomes: A Review. Fertility Research And Practice. 2020; 6(1): 1-11
- Nuojua-Huttunen S. Intrauterine Insemination Treatment In Subfertility: An Analysis Of Factors Affecting Outcome. Human Reproduction. 1999; 14: 698–703.
- Crawford NM, Steiner AZ. Age-Related Infertility. Obstetrics And Gynecology Clinics Of North America. 2015; 42: 15–25.
- Nesbit CB, Blanchette-Porter M, Esfandiari N. Ovulation Induction And Intrauterine Insemination In Women Of Advanced Reproductive Age: A Systematic Review Of The Literature. Journal Of Assisted Reproduction And Genetics. 2022; 39: 1445-1491.
- Bellver J, Garrido N, Remohí J, et al. Influence Of Paternal Age On Assisted Reproduction Outcome. Reproductive Biomedicine Online. 2008; 17: 595–604.
- Mathieu C, Ecochard R, Bied V, et al. Cumulative Conception Rate Following Intrauterine Artificial Insemination With Husband's Spermatozoa: Influence Of Husband's Age. Human Reproduction. 1995; 10: 1090–1097.
- Ombelet W, Dhont N, Thijssen A, et al. Semen Quality And Prediction Of IUI Success In Male Subfertility: A

- Systematic Review. Reproductive Biomedicine Online. 2014; 28(3): 300–309.
- Deveneau NE, Sinno O, Krause M, Et Al. Impact Of Sperm Morphology On The Likelihood Of Pregnancy After Intrauterine Insemination. Fertility Sterility. 2014; 102: 1584–1590.
- 16. Erdem M, Erdem A, Mutlu MF, et al. The Impact Of Sperm Morphology On The Outcome Of Intrauterine Insemination Cycles With Gonadotropins In Unexplained And Male Subfertility. European Journal Of Obstetrics & Gynecology And Reproductive Biology. 2016; 197: 120–124.
- Ruiter-Ligeti J, Agbo C, Dahan M. The Impact Of Semen Processing On Sperm Parameters And Pregnancy Rates With Intrauterine Inseminations. Minerva Obstetrics And Gynecology. 2017; 69: 218– 224.
- 18. Immediata V, Patrizio P, Parisen MR, et al. Twenty-One Year Experience With Intrauterine Inseminations After Controlled Ovarian Stimulation With Gonadotropins: Maternal Age Is The Only Prognostic Factor For Success. Journal Of Assisted Reproduction And Genetics. 2020; 37(5): 1195-1201.
- Belloc S, Cohen-Bacrie P, Benkhalifa M, et al. Effect Of Maternal And Paternal Age On Pregnancy And Miscarriage Rates After Intrauterine Insemination. Reproductive Biomedicine Online. 2008; 17(3): 392-397.
- Tatsumi T, Ishida E, Tatsumi K, et al. Advanced Paternal Age Alone Does Not Adversely Affect Pregnancy Or Live-Birth Rates Or Sperm Parameters Following Intrauterine Insemination. Reproductive Biomedicine Online 2018; 17(4): 459-465.
- Paoli D, Pelloni M, Lenzi A, Lombardo F. Cryopreservation Of Sperm: Effects On Chromatin And Strategies To Prevent Them. In: Baldi, E, Muratori, M. (Eds) Genetic Damage In Human Spermatozoa. Advances In Experimental Medicine And Biology. 2019.
- 22. Rozati H, Handley T, Jayasena CN. Process And Pitfalls Of Sperm Cryopreservation. Journal Of Clinical Medicine. 2017; 6(9): 1-13.
- 23. Isachenko E, Rahimi G, Sanchez MR, Isachenko V. Novel Approaches To The Cryopreservation Of Human Spermatozoa: History And Development Of The Spermatozoa Vitrification Technology. Journal of Reproductive and Stem Cell Biotechnology. 2011; 2(2): 128-145.
- Williams DH. Sperm Banking And The Cancer Patient. Therapeutic Advances In Urology. 2010; 2(1): 19-34.
- Ajala T, Rafi J, Larsen-Disney P, Howell R. Fertility Preservation For Cancer Patients: A Review. Obstetrics And Gynecology International. 2010; 2010: 160386. Doi: 10.1155/2010/160386. 2010; 2010: 160386.
- 26. Multidisciplinary Working Group Convened By The British Fertility Society. A Strategy For Fertility Services For Survivors Of Childhood Cancer. Human Fertility (Camb). 2003; 6 (2): 1-39.
- Di Santo M, Tarozzi N, Nadalini M, Borini A. Human Sperm Cryopreservation: Update On Techniques,

- Effect On DNA Integrity, And Implications For ART. Advances In Urology. 2012; 2012: 1-12.
- Sharma Y, Sharma M. Sperm Cryopreservation: Principles And Biology. Journal Of Infertility And Reproductive Biology. 2020, 8(3): 43-48.
- Hossain A, Osuamkpe C, Hossain S, Phelps JY. Spontaneously Developed Tail Swellings (SDTS) Influence The Accuracy Of The Hypo-Osmotic Swelling Test (HOS-Test) In Determining Membrane Integrity And Viability Of Human Spermatozoa. Journal Of Assisted Reproduction And Genetics. 2010; 27(2-3): 83-86.
- Shabtaie SA, Gerkowicz SA, Kohn TP, Ramasamy R. Role Of Abnormal Sperm Morphology In Predicting Pregnancy Outcomes. Current Urology Reports. 2016; 17(9): 67.
- Hotaling JM, Patel DP, Vendryes C, et al. Predictors Of Sperm Recovery After Cryopreservation In Testicular Cancer. Asian Journal Of Andrology. 2016; 18(1): 35-38
- Ribas-Maynou J, Fernández-Encinas A, García-Peiró A, et al. Human Semen Cryopreservation: A Sperm DNA Fragmentation Study With Alkaline And Neutral Comet Assay. Andrology. 2014; 2(1): 83-87.
- Centola GM, Eberly S. Seasonal Variations And Age-Related Changes In Human Sperm Count, Motility, Motion Parameters, Morphology, And White Blood Cell Concentration. Fertility And Sterility. 1999; 72: 803–808.
- Kidd SA, Eskenazi B, Wyrobek AJ. Effects Of Male Age On Semen Quality And Fertility: A Review Of The Literature. Fertility And Sterility. 2001; 75: 237-248.
- 35. Stone BA, Alex A, Werlin LB, Marrs RP. Age Thresholds For Changes In Semen Parameters In Men. Fertility And Sterility. 2013; 100: 952–958.
- 36. Li WN, Jia MM, Peng YQ, et al. Semen Quality Pattern And Age Threshold: A Retrospective Cross-Sectional Study Of 71,623 Infertile Men In China, Between 2011 And 2017. Reproductive Biology And Endocrinology. 2019. 107(2019): 1-8.
- Johnson SL, Dunleavy J, Gemmell NJ, Nakagawa S.
 Consistent Age-Dependent Declines In Human Semen Quality: A Systematic Review And Meta-Analysis. Ageing Research Reviews. 2015; 19: 22-33.
- Pasqualotto FF, Sobreiro BP, Hallak J, et al. Sperm Concentration And Normal Sperm Morphology Decrease And Follicle Stimulating Hormone Level Increases With Age. BJU International. 2005; 96: 1087–1109.
- Pino V, Sanz A, Valdés N, et al. The Effects Of Aging On Semen Parameters And Sperm DNA Fragmentation. JBRA Assisted Reproduction. 2020; 24(1): 82-86.
- Nikbakht R, Saharkhiz N. The Influence Of Sperm Morphology, Total Motile Sperm Count Of Semen And The Number Of Motile Sperm Inseminated In Sperm Samples On The Success Of Intrauterine Insemination. International Journal Of Fertility & Sterility. 2011; 5(3): 168-173.
- 41. Van Voorhis B. Effect Of The Total Motile Sperm Count On The Efficacy And Cost-Effectiveness Of

- Intrauterine Insemination And In Vitro Fertilization. Fertility And Sterility. 2001; 75: 661–668.
- 42. Ejzenberg D, Gomes TJO, Monteleone PAA, et al. Prognostic Factors For Pregnancy After Intrauterine Insemination. International Journal Of Gynecology & Obstetrics. 2019; 147(1): 65-72.
- Guan HT, Zheng Y, Wang JJ, et al. Relationship Between Donor Sperm Parameters And Pregnancy Outcome After Intrauterine Insemination: Analysis Of 2821 Cycles In 1355 Couples. Andrologia. 2016; 48(1): 29-36
- 44. Matorras R, Corcóstegui B, Perez C, et al. Sperm Morphology Analysis (Strict Criteria) In Male Infertility Is Not A Prognostic Factor In Intrauterine Insemination With Husband's Sperm. Fertility And Sterility. 1995; 63(3): 608-611.
- Lee RK, Hou JW, Ho HY, et al. Sperm Morphology Analysis Using Strict Criteria As A Prognostic Factor In Intrauterine Insemination. International Journal Of Andrology. 2002; 25(5): 277-280.
- Tao Y, Sanger E, Saewu A. Human Sperm Vitrification: The State Of The Art. Reproductive Biology And Endocrinology. 2020; 18(17): 1-10.
- 47. Ku JY, Park NC, Jeon TG, Park HJ. Semen Analysis In Cancer Patients Referred For Sperm Cryopreservation Before Chemotherapy Over A 15-Year Period In Korea. The World Journal Of Men's Health. 2015, 33(1): 8-13.

- Meseguer M, Molina N, García-Velasco JA, et al. Sperm Cryopreservation In Oncological Patients: A 14-Year Follow-Up Study. Fertility And Sterility. 2006; 85(3): 640-645.
- Matorras R, Gorostiaga A, Diez J, et al. Intrauterine Insemination With Frozen Sperm Increases Pregnancy Rates In Donor Insemination Cycles Under Gonadotropin Stimulation. Fertility And Sterility. 1996; 65(3): 620-625.
- Merviel P, Heraud MH, Grenier N, et al. Predictive Factors For Pregnancy After Intrauterine Insemination (IUI): An Analysis Of 1038 Cycles And A Review Of The Literature. Fertility And Sterility. 2010; 93: 79–88.
- Campana A, Sakkas D, Stalberg A, et al. Intrauterine Insemination: Evaluation Of The Results According To The Woman's Age, Sperm Quality, Total Sperm Count Per Insemination And Life Table Analysis. Human Reproduction. 1996; 11(4): 732-736.
- Ombelet W, Vandeput H, Van De Putte G, et al. Intrauterine Insemination After Ovarian Stimulation With Clomiphene Citrate: Predictive Potential Of Inseminating Motile Count And Sperm Morphology. Human Reproduction. 1997; 12: 1458–1463.
- 53. Lemmens L, Kos S, Beijer C, et al. Semen Section Of The Dutch Foundation For Quality Assessment In Medical Laboratories. Predictive Value Of Sperm Morphology And Progressively Motile Sperm Count For Pregnancy Outcomes In Intrauterine Insemination. Fertility and Sterility. 2016; 105(6):1462-1468.